How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.

Slides:



Advertisements
Similar presentations
Dynamic Causal Modelling (DCM) for fMRI
Advertisements

Dynamic causal Modelling for evoked responses Stefan Kiebel Wellcome Trust Centre for Neuroimaging UCL.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Bayesian models for fMRI data
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Free Energy Workshop - 28th of October: From the free energy principle to experimental neuroscience, and back The Bayesian brain, surprise and free-energy.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
The free-energy principle: a rough guide to the brain? Karl Friston
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
CDB Exploring Science and Society Seminar Thursday 19 November 2009 at 5.30pm Host: Prof Giorgio Gabella The Bayesian brain, surprise and free-energy.
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Free energy and active inference Karl Friston Abstract How much about our interaction with – and experience of – our world can be deduced from basic principles?
Abstract We start with a statistical formulation of Helmholtz’s ideas about neural energy to furnish a model of perceptual inference and learning that.
The free-energy principle: a rough guide to the brain? K Friston Summarized by Joon Shik Kim (Thu) Computational Models of Intelligence.
ABSTRACT: My treatment of critical gaps in models of probabilistic inference will focus on the potential of unified theories to “close the gaps” between.
DCM for ERPs/EFPs Clare Palmer & Elina Jacobs Expert: Dimitris Pinotsis.
Abstract This talk summarizes recent attempts to integrate action and perception within a single optimization framework. We start with a statistical formulation.
J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK UZH – Foundations of Human Social Behaviour, Zurich, Switzerland Dynamic Causal Modelling:
Dynamic causal modelling of electromagnetic responses Karl Friston - Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL In recent years,
Abstract This talk summarizes our recent attempts to integrate action and perception within a single optimization framework. We start with a statistical.
Abstract This talk will present a general approach (DCM) to the identification of dynamic input-state-output systems such as the network of equivalent.
Recent advances in the theory of brain function
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Abstract: How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
Abstract We offer a formal treatment of choice behaviour based on the premise that agents minimise the expected free energy of future outcomes. Crucially,
Abstract Predictive coding models and the free-energy principle, suggests that cortical activity in sensory brain areas reflects the precision of prediction.
Abstract: This overview of the free energy principle offers an account of embodied exchange with the world that associates conscious operations with actively.
Abstract This presentation questions the need for reinforcement learning and related paradigms from machine-learning, when trying to optimise the behavior.
Zangwill Club Seminar - Lent Term The Bayesian brain, surprise and free-energy Karl Friston, Wellcome Centre for Neuroimaging, UCL Abstract Value-learning.
Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Free energy and active inference
Dynamic Causal Modelling for EEG and MEG
Deans Lecture Reception PM, Lecture 6-7, Lecture theatre S1, Clayton Campus, Monash University). Models, maps and modalities in brain imaging Karl.
Reasons to be careful about reward A flow (policy) cannot be specified with a scalar function of states: the fundamental theorem of vector calculus – aka.
Abstract We will use schizophrenia as a case study of computational psychiatry. We first review the basic phenomenology and pathophysiological theories.
Brain modes and network discovery Karl Friston The past decade has seen tremendous advances in characterising functional integration in the brain. Much.
Free-energy and active inference
Abstract We suggested recently that attention can be understood as inferring the level of uncertainty or precision during hierarchical perception. In.
Abstract This presentation will look at action, perception and cognition as emergent phenomena under a unifying perspective: This Helmholtzian perspective.
Workshop on Mathematical Models of Cognitive Architectures December 5-9, 2011 CIRM, Marseille Workshop on Mathematical Models of Cognitive Architectures.
Dynamic Causal Modelling (DCM) Marta I. Garrido Thanks to: Karl J. Friston, Klaas E. Stephan, Andre C. Marreiros, Stefan J. Kiebel,
Abstract If we assume that neuronal activity encodes a probabilistic representation of the world that optimizes free- energy in a Bayesian fashion, then.
Abstract In this presentation, I will rehearse the free-energy formulation of action and perception, with a special focus on the representation of uncertainty:
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Abstract In this presentation, I will rehearse the free-energy formulation of action and perception, with a special focus on the representation of uncertainty:
Dynamic Causal Model for evoked responses in MEG/EEG Rosalyn Moran.
Workshop on: The Free Energy Principle (Presented by the Wellcome Trust Centre for Neuroimaging) July 5 (Thursday) - 6 (Friday) 2012 Workshop on: The.
Bayesian inference Lee Harrison York Neuroimaging Centre 23 / 10 / 2009.
Abstract: How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to.
Tutorial Session: The Bayesian brain, surprise and free-energy Value-learning and perceptual learning have been an important focus over the past decade,
Dynamic Causal Modeling of Endogenous Fluctuations
Free energy and active inference
Nicolas Alzetta CoNGA: Cognition and Neuroscience Group of Antwerp
Free energy and life as we know it
Free energy, the brain and life as we know it
Computational models for imaging analyses
Wellcome Trust Centre for Neuroimaging University College London
Dynamic Causal Model for evoked responses in M/EEG Rosalyn Moran.
Canonical Microcircuits for Predictive Coding
The free-energy principle: a rough guide to the brain? K Friston
Predictive computational modelling in the brain (and other animals)
Dynamic Causal Modelling for M/EEG
CRIS Workshop: Computational Neuroscience and Bayesian Modelling
Dynamic Causal Modelling for evoked responses
Presentation transcript:

How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand the self-organised behaviour of embodied agents, like ourselves, as satisfying basic imperatives for sustained exchanges with the environment. In brief, one simple driving force appears to explain many aspects of action and perception. This driving force is the minimisation of surprise or prediction error. In the context of perception, this corresponds to Bayes-optimal predictive coding that suppresses exteroceptive prediction errors. In the context of action, motor reflexes can be seen as suppressing proprioceptive prediction errors. We will look at some of the phenomena that emerge from this scheme, such as hierarchical message passing in the brain and the perceptual inference that ensues. I hope to illustrate these points using simple simulations of perception, action and action observation.. Life as we know it Karl Friston, University College London

Overview The statistics of life Markov blankets and ergodic systems simulations of a primordial soup The anatomy of inference graphical models and predictive coding canonical microcircuits Action and perception perceptual omission responses simulations of action observation

“How can the events in space and time which take place within the spatial boundary of a living organism be accounted for by physics and chemistry?” Erwin Schrödinger (1943) The Markov blanket as a statistical boundary (parents, children and parents of children) Internal states External states Sensory states Active states

External states Internal states Sensory states External statesInternal states The Markov blanket in biotic systems

Phase-boundary The Fokker-Planck equation (a.k.a. the Kolmogorov forward equation) describes the evolution of the probability density over states This density depends upon flow, which can always be expressed in terms of curl-free and divergence-free components – by the Helmholtz decomposition (a.k.a. the fundamental theorem of vector calculus) lemma : any ergodic random dynamical system (m) that possesses a Markov blanket will appear to actively maintain its structural and dynamical integrity

This means that action will appear to maximize Bayesian model evidence – and the entropy (dispersion) of the internal states and their Markov blanket. This is exactly consistent with the good regulator theorem (every good regulator is a model of its environment) External statesInternal states But what about the Markov blanket?

In summary, for any ergodic random dynamical system: The existence of a Markov blanket necessarily implies a partition of states into internal states, their Markov blanket (sensory and active states) and external or hidden states. Active inference : internal states appear to infer the hidden causes of sensory states (by maximizing Bayesian evidence). By the circular causality induced by the Markov blanket, sensory states depend on active states, rendering inference active or embodied. Autopoiesis : Because active states change – but are not changed by – external states they will appear to minimize the dispersion (entropy) of internal states and their Markov blanket. This means active states will appear to maintain the structural and functional integrity of the Markov blanket.

Overview The statistics of life Markov blankets and ergodic systems simulations of a primordial soup The anatomy of inference graphical models and predictive coding canonical microcircuits Action and perception perceptual omission responses simulations of action observation

Position Simulations of a (prebiotic) primordial soup Weak electrochemical attraction Strong repulsion Short-range forces

Element Adjacency matrix Markov Blanket Hidden states Sensory states Active states Internal states Markov Blanket = [ B · [eig(B) > τ]] Markov blanket matrix encodes the children, parents and parents of children Finding the (principal) Markov blanket

Active inference – a prebiotic stimulation experiment

Autopoiesis and oscillator death – a prebiotic lesion experiment

Overview The statistics of life Markov blankets and ergodic systems simulations of a primordial soup The anatomy of inference graphical models and predictive coding canonical microcircuits Action and perception perceptual omission responses simulations of action observation

“Objects are always imagined as being present in the field of vision as would have to be there in order to produce the same impression on the nervous mechanism” - von Helmholtz Thomas Bayes Geoffrey Hinton Richard Feynman The Helmholtz machine and the Bayesian brain Richard Gregory Hermann von Helmholtz

The principle of least free energy (and action), Bayesian inference and predictive coding minimising prediction error = maximising Bayesian model evidence surprisedivergence entropyenergy prediction error complexity

How can we minimize free energy (prediction error)? Change sensations sensations – predictions Prediction error Change predictions Action Perception

A simple hierarchy Predictions and generative models whatwhere Sensory fluctuations

Generative model Model inversion (inference) A simple hierarchy Expectations: Predictions: Prediction errors: Descending predictions Descending predictions Ascending prediction errors From models to perception and predictive coding

Haeusler and Maass: Cereb. Cortex 2006;17: Bastos et al: Neuron 2012; 76: Canonical microcircuits for predictive coding

frontal eye fields geniculate visual cortex retinal input pons oculomotor signals Prediction error (superficial pyramidal cells) Conditional predictions (deep pyramidal cells) Top-down or backward predictions Bottom-up or forward prediction error proprioceptive input reflex arc Perception David Mumford Predictive coding with reflexes Action

Biological agents minimize their average surprise (entropy) They minimize surprise by suppressing prediction error (free-energy) Prediction error can be reduced by changing predictions (perception) Prediction error can be reduced by changing sensations (action) Perception entails recurrent message passing in the brain to optimize predictions Action makes predictions come true (and minimizes surprise)

Overview The statistics of life Markov blankets and ergodic systems simulations of a primordial soup The anatomy of inference graphical models and predictive coding canonical microcircuits Action and perception perceptual omission responses simulations of action observation

Perceptual inference and sequences of sequences Syrinx Neuronal hierarchy Time (sec) Frequency (KHz) sonogram

omission and violation of predictions Stimulus but no percept Percept but no stimulus Frequency (Hz) stimulus (sonogram) Time (sec) Frequency (Hz) percept peristimulus time (ms) LFP (micro-volts) ERP (error) without last syllable Time (sec) percept peristimulus time (ms) LFP (micro-volts) with omission

Overview The statistics of life Markov blankets and ergodic systems simulations of a primordial soup The anatomy of inference graphical models and predictive coding canonical microcircuits Action and perception perceptual omission responses simulations of action observation

proprioceptive input Action with point attractors visual input Descending proprioceptive predictions Descending proprioceptive predictions

action position (x) position (y) observation position (x) Heteroclinic cycle (central pattern generator) Descending proprioceptive predictions Descending proprioceptive predictions

“Each movement we make by which we alter the appearance of objects should be thought of as an experiment designed to test whether we have understood correctly the invariant relations of the phenomena before us, that is, their existence in definite spatial relations.” 'The Facts of Perception' (1878) in The Selected Writings of Hermann von Helmholtz, Ed. R. Karl, Middletown: Wesleyan University Press, 1971 p. 384 Hermann von Helmholtz

Thank you And thanks to collaborators: Rick Adams Andre Bastos Sven Bestmann Harriet Brown Jean Daunizeau Mark Edwards Xiaosi Gu Lee Harrison Stefan Kiebel James Kilner Jérémie Mattout Rosalyn Moran Will Penny Lisa Quattrocki Knight Klaas Stephan And colleagues: Andy Clark Peter Dayan Jörn Diedrichsen Paul Fletcher Pascal Fries Geoffrey Hinton James Hopkins Jakob Hohwy Henry Kennedy Paul Verschure Florentin Wörgötter And many others

Perception and Action: The optimisation of neuronal and neuromuscular activity to suppress prediction errors (or free- energy) based on generative models of sensory data. Learning and attention: The optimisation of synaptic gain and efficacy over seconds to hours, to encode the precisions of prediction errors and causal structure in the sensorium. This entails suppression of free-energy over time. Neurodevelopment: Model optimisation through activity- dependent pruning and maintenance of neuronal connections that are specified epigenetically Evolution: Optimisation of the average free-energy (free-fitness) over time and individuals of a given class (e.g., conspecifics) by selective pressure on the epigenetic specification of their generative models. Time-scale Free-energy minimisation leading to…

Searching to test hypotheses – life as an efficient experiment Free energy principleminimise uncertainty