How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.

Slides:



Advertisements
Similar presentations
Dynamic Causal Modelling (DCM) for fMRI
Advertisements

A proposal for the function of canonical microcircuits André Bastos July 5 th, 2012 Free Energy Workshop.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Bayesian models for fMRI data
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Free Energy Workshop - 28th of October: From the free energy principle to experimental neuroscience, and back The Bayesian brain, surprise and free-energy.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
The free-energy principle: a rough guide to the brain? Karl Friston
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
CDB Exploring Science and Society Seminar Thursday 19 November 2009 at 5.30pm Host: Prof Giorgio Gabella The Bayesian brain, surprise and free-energy.
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Free energy and active inference Karl Friston Abstract How much about our interaction with – and experience of – our world can be deduced from basic principles?
Rosalyn Moran Virginia Tech Carilion Research Institute Dynamic Causal Modelling for Cross Spectral Densities.
Abstract We start with a statistical formulation of Helmholtz’s ideas about neural energy to furnish a model of perceptual inference and learning that.
The free-energy principle: a rough guide to the brain? K Friston Summarized by Joon Shik Kim (Thu) Computational Models of Intelligence.
ABSTRACT: My treatment of critical gaps in models of probabilistic inference will focus on the potential of unified theories to “close the gaps” between.
DCM for ERPs/EFPs Clare Palmer & Elina Jacobs Expert: Dimitris Pinotsis.
Abstract This talk summarizes recent attempts to integrate action and perception within a single optimization framework. We start with a statistical formulation.
J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK UZH – Foundations of Human Social Behaviour, Zurich, Switzerland Dynamic Causal Modelling:
Dynamic causal modelling of electromagnetic responses Karl Friston - Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL In recent years,
Abstract This talk summarizes our recent attempts to integrate action and perception within a single optimization framework. We start with a statistical.
Abstract This talk will present a general approach (DCM) to the identification of dynamic input-state-output systems such as the network of equivalent.
Recent advances in the theory of brain function
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Abstract: How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
Abstract We offer a formal treatment of choice behaviour based on the premise that agents minimise the expected free energy of future outcomes. Crucially,
Abstract Predictive coding models and the free-energy principle, suggests that cortical activity in sensory brain areas reflects the precision of prediction.
Abstract: This overview of the free energy principle offers an account of embodied exchange with the world that associates conscious operations with actively.
Abstract This presentation questions the need for reinforcement learning and related paradigms from machine-learning, when trying to optimise the behavior.
Zangwill Club Seminar - Lent Term The Bayesian brain, surprise and free-energy Karl Friston, Wellcome Centre for Neuroimaging, UCL Abstract Value-learning.
Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Free energy and active inference
Dynamic Causal Modelling for EEG and MEG
Deans Lecture Reception PM, Lecture 6-7, Lecture theatre S1, Clayton Campus, Monash University). Models, maps and modalities in brain imaging Karl.
Reasons to be careful about reward A flow (policy) cannot be specified with a scalar function of states: the fundamental theorem of vector calculus – aka.
Abstract We will use schizophrenia as a case study of computational psychiatry. We first review the basic phenomenology and pathophysiological theories.
Brain modes and network discovery Karl Friston The past decade has seen tremendous advances in characterising functional integration in the brain. Much.
Free-energy and active inference
Abstract We suggested recently that attention can be understood as inferring the level of uncertainty or precision during hierarchical perception. In.
Abstract This presentation will look at action, perception and cognition as emergent phenomena under a unifying perspective: This Helmholtzian perspective.
Workshop on Mathematical Models of Cognitive Architectures December 5-9, 2011 CIRM, Marseille Workshop on Mathematical Models of Cognitive Architectures.
Dynamic Causal Modelling (DCM) Marta I. Garrido Thanks to: Karl J. Friston, Klaas E. Stephan, Andre C. Marreiros, Stefan J. Kiebel,
Abstract If we assume that neuronal activity encodes a probabilistic representation of the world that optimizes free- energy in a Bayesian fashion, then.
Abstract In this presentation, I will rehearse the free-energy formulation of action and perception, with a special focus on the representation of uncertainty:
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Abstract In this presentation, I will rehearse the free-energy formulation of action and perception, with a special focus on the representation of uncertainty:
Workshop on: The Free Energy Principle (Presented by the Wellcome Trust Centre for Neuroimaging) July 5 (Thursday) - 6 (Friday) 2012 Workshop on: The.
Abstract: How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to.
DCM for evoked responses Ryszard Auksztulewicz SPM for M/EEG course, 2015.
Tutorial Session: The Bayesian brain, surprise and free-energy Value-learning and perceptual learning have been an important focus over the past decade,
Principles of Dynamic Causal Modelling
Dynamic Causal Modeling of Endogenous Fluctuations
Free energy and active inference
Nicolas Alzetta CoNGA: Cognition and Neuroscience Group of Antwerp
Free energy and life as we know it
Free energy, the brain and life as we know it
Computational models for imaging analyses
Wellcome Trust Centre for Neuroimaging University College London
Canonical Microcircuits for Predictive Coding
DCM for evoked responses
The free-energy principle: a rough guide to the brain? K Friston
Predictive computational modelling in the brain (and other animals)
Dynamic Causal Modelling
CRIS Workshop: Computational Neuroscience and Bayesian Modelling
Presentation transcript:

How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand the self-organised behaviour of embodied agents, like ourselves, as satisfying basic imperatives for sustained exchanges with the environment. In brief, one simple driving force appears to explain many aspects of action and perception. This driving force is the minimisation of surprise or prediction error. In the context of perception, this corresponds to Bayes-optimal predictive coding that suppresses exteroceptive prediction errors. In the context of action, motor reflexes can be seen as suppressing proprioceptive prediction errors. We will look at some of the phenomena that emerge from this scheme, such as hierarchical message passing in the brain and the ensuing perceptual inference.. Does the human brain implement predictive coding? Karl Friston, University College London Dialogues on the role of top-down factors in sensory processing

Overview The anatomy of inference graphical models canonical microcircuits Functional asymmetries spectral connections modulatory connections Action and perception inference and uncertainty simulations of saccadic searches

“Objects are always imagined as being present in the field of vision as would have to be there in order to produce the same impression on the nervous mechanism” - von Helmholtz Thomas Bayes Geoffrey Hinton Richard Feynman The Helmholtz machine and the Bayesian brain Richard Gregory Hermann von Helmholtz

“Objects are always imagined as being present in the field of vision as would have to be there in order to produce the same impression on the nervous mechanism” - von Helmholtz Richard Gregory Hermann von Helmholtz sensory impressions… Plato: The Republic (514a-520a)

Bayesian filtering and predictive coding prediction update prediction error

Minimizing prediction error Change sensations sensations – predictions Prediction error Change predictions Action Perception

A simple hierarchy Generative models whatwhere Sensory fluctuations

Generative model Model inversion (inference) A simple hierarchy Descending predictions Descending predictions Ascending prediction errors From models to perception Expectations: Predictions: Prediction errors: Predictive coding

Haeusler and Maass: Cereb. Cortex 2006;17: Bastos et al: Neuron 2012; 76: Canonical microcircuits for predictive coding

frontal eye fields geniculate visual cortex retinal input pons oculomotor signals Errors (superficial pyramidal cells) Expectations (deep pyramidal cells) Top-down or backward predictions Bottom-up or forward prediction error proprioceptive input reflex arc Perception David Mumford Predictive coding with reflexes Action

Overview The anatomy of inference graphical models canonical microcircuits Functional asymmetries spectral connections modulatory connections Action and perception inference and uncertainty simulations of saccadic searches

superficial deep Errors (superficial pyramidal cells) Expectations (deep pyramidal cells) frequency (Hz) spectral power Forward transfer function frequency (Hz) spectral power Backward transfer function Andre Bastos V4V1

Errors (superficial pyramidal cells) Expectations (deep pyramidal cells) Linear or driving connections Nonlinear or modulatory connections superficial deep NMDA receptor density

Interim summary Hierarchical predictive coding is a neurobiological plausible scheme that the brain might use for (approximate) Bayesian inference about the causes of sensations Predictive coding requires the dual encoding of expectations and errors, with reciprocal (neuronal) message passing Much of the known neuroanatomy and neurophysiology of cortical architectures is consistent with the requisite message passing In particular, the functional asymmetries and laminar specificity of intrinsic and extrinsic connections provide a formal perspective on spectral asymmetries and nonlinear coupling in the brain.

Overview The anatomy of inference graphical models canonical microcircuits Functional asymmetries spectral connections modulatory connections Action and perception inference and uncertainty simulations of saccadic searches

Sampling the world to minimise uncertainty Free energy minimisationExpected uncertainty “I am [ergodic] therefore I think”  “I think therefore I am [ergodic]” LikelihoodWorld modelPrior beliefs

saliencevisual inputstimulussampling Perception as hypothesis testing – saccades as experiments Sampling the world to minimise uncertainty Free energy minimisationExpected uncertainty

Frontal eye fields Pulvinar salience map Fusiform (what) Superior colliculus Visual cortex oculomotor reflex arc Parietal (where)

Visual samples Conditional expectations about hidden (visual) states And corresponding percept Saccadic eye movements Hidden (oculomotor) states

“Each movement we make by which we alter the appearance of objects should be thought of as an experiment designed to test whether we have understood correctly the invariant relations of the phenomena before us, that is, their existence in definite spatial relations.” ‘The Facts of Perception’ (1878) in The Selected Writings of Hermann von Helmholtz, Ed. R. Karl, Middletown: Wesleyan University Press, 1971 p. 384 Hermann von Helmholtz

Thank you And thanks to collaborators: Rick Adams Andre Bastos Sven Bestmann Harriet Brown Jean Daunizeau Mark Edwards Xiaosi Gu Lee Harrison Stefan Kiebel James Kilner Jérémie Mattout Rosalyn Moran Will Penny Lisa Quattrocki Knight Klaas Stephan And colleagues: Andy Clark Peter Dayan Jörn Diedrichsen Paul Fletcher Pascal Fries Geoffrey Hinton James Hopkins Jakob Hohwy Henry Kennedy Paul Verschure Florentin Wörgötter And many others