169 Tm Mössbauer Spectroscopy J.M. Cadogan Department of Physics and Astronomy University of Manitoba Winnipeg, Manitoba, R3T 2N2 Canada

Slides:



Advertisements
Similar presentations
Color of Transition Metal Ions in Water Solution
Advertisements

Matter waves 1 Show that the wavelength of an electron can be expressed as where E is the energy in volts and  in nm.
Matter takes up space and has mass Everything composed of matter Any biological process, function or structure can be broken down to its chemical level.
Mössbauer Spectroscopy under Magnetic Field to Explore the Low Temperature Spin Structure in a Molecular Layered Ferrimagnet A. Bhattacharjee, P. Gütlich.
157 T INTERNAL MAGNETIC FIELD IN Fe[C(SiMe 3 ) 3 ] 2 COMPOUND AT 20K Ernő Kuzmann, 1,2 Roland Szalay, 2 Attila Vértes, 1,2 Zoltán Homonnay, 2 Imre Pápai,
Bonds.
Relativistic Effects in Gold Chemistry Jan Stanek Jagiellonian University Marian Smoluchowski Institute of Physics Krakow, Poland.
Valence instabilities of gold in perovskite structures The relativistic effects in gold stabilizes enormously the 6s level and destabilizes the 5d levels.
Site occupancies in the R 2-x Fe 14+2x Si 3 (R = Ce, Nd, Gd, Dy, Ho, Er, Lu, Y) compounds studied by Mössbauer spectroscopy A. Błachowski 1, K. Ruebenbauer.
Rare-earth-iron nanocrystalline magnets E.Burzo 1), C.Djega 2) 1) Faculty of Physics, Babes-Bolyai University, Cluj-Napoca 2) Universite Paris XII, France.
A. Atomic Mass Atomic mass = # p+ + n0
1. Name the particles in the atom and give the charges associated with each.
Objectives By the end of this section you should:
Magnets, Metals and Superconductors Tutorial 1 Dr. Abbie Mclaughlin G24a.
Modern Approaches to Protein structure Determination (6 lectures)
Stellar Structure Section 5: The Physics of Stellar Interiors Lecture 11 – Total pressure: final remarks Stellar energy sources Nuclear binding energy.
Atom atom atom atom atom 1.True or false? Protons are in the nucleus.
A. Błachowski1, K. Ruebenbauer1, J. Żukrowski2, and Z. Bukowski3
First-principles calculations with perturbed angular correlation experiments in MnAs and BaMnO 3 Workshop, November Experiment: IS390.
L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Spectroscopy of the solar Transition Region and Corona L. Teriaca.
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Chapter 30 Induction and Inductance In this chapter we will study the following topics: -Faraday’s law of induction -Lenz’s rule -Electric field induced.
1 Atomic Number The atomic number is equal to the number of protons in the nucleus. Sometimes given the symbol Z. On the periodic chart Z is the uppermost.
Chapter 9: The Periodic Table and Some Atomic Properties
Mechanism of the Verwey transition in magnetite Fe3O4
Level Splitting in Frustrated non-Kramers doublet systems Collin Broholm and Joost van Duijn Department of Physics and Astronomy Johns Hopkins University.
Electron Spin Resonance (ESR) Spectroscopy
When an nucleus releases the transition energy Q (say 14.4 keV) in a  -decay, the  does not carry the full 14.4 keV. Conservation of momentum requires.
6-1 RFSS: Lecture 6 Gamma Decay Part 2 Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition.
Magnetism III: Magnetic Ordering
Corey Thompson Technique Presentation 03/21/2011
Spectral Line Physics Atomic Structure and Energy Levels Atomic Transition Rates Molecular Structure and Transitions 1.
Mossbauer Spectroscopy
Mössbauer spectroscopy References: J.P. Adloff, R. Guillaumont: Fundamentals of Radiochemistry, CRC Press, Boca Raton, 1993.
57 Mn Mössbauer collaboration at ISOLDE/CERN Emission Mössbauer spectroscopy of advanced materials for opto- and nano- electronics Spokepersons: Haraldur.
Collinear laser spectroscopy of 42g,mSc
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Yb valence in YbMn 2 (Si,Ge) 2 J.M. Cadogan and D.H. Ryan Department of Physics and Astronomy, University of Manitoba Winnipeg, MB, R3T 2N2, Canada
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Mössbauer spectroscopy of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2 11-family cooperation K. Wojciechowski.
The first-order magnetostructural transition in Gd 5 Sn 4 D.H. Ryan Physics Department, McGill University, Montreal, QC, Canada, H3A 2T8
Ch. Urban 1, S. Janson 1, U. Ponkratz 1,2, O. Kasdorf 1, K. Rupprecht 1, G. Wortmann 1, T. Berthier 3, W. Paulus 3 1 Universität Paderborn, Department.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
The Structure and Dynamics of Solids
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
W. M. Reiff a, M. Feist b, and E. Kemnitz b a Department of Chemistry, Northeastern University, Boston MA, 02115, USA; b Institut.
Mineral Spectroscopy Visible Infrared Raman Mössbauer NMR.
Comparing erbium moments derived from 166 Er Mössbauer spectroscopy and neutron diffraction D.H. Ryan and J.M. Cadogan Physics Department, McGill University,
New emission Mössbauer spectroscopy studies at ISOLDE in 2015 Haraldur Páll Gunnlaugsson, Torben E. Mølholt, Karl Johnston, Juliana Schell, The Mössbauer.
Hyperfine fields of Lanthanides (and Actinides) in Fe: preliminary results and interpretations Nuclear condensed matter physics University of Leuven D.
MÖSSBAUER SPECTROSCOPY OF IRON-BASED SUPERCONDUCTOR FeSe
Laser manipulation of nuclear transitions: experiment.
Jun Hee Cho1, Sang Gil Ko1, Yang kyu Ahn1, Eun Jung Choi2
Mossbauer spectroscopy
Particle Size Dependence of Magnetic Properties in Cobalt Ferrite Nanoparticles Jun Hee Cho 1, Sang Gil Ko 1, Yang kyu Ahn 1, Eun Jung Choi 2 * 1 Department.
University of Ioannina
Shalom Shlomo Cyclotron Institute Texas A&M University
Emission Mössbauer Spectroscopy at ISOLDE/CERN
Electric quadrupole interaction in cubic BCC α-Fe
Stationary Perturbation Theory And Its Applications
From : Introduction to Nuclear and Particle Physics A.Das and T.Ferbel
آزمايشگاه فناوري نانو کفا آزمايشگاه فناوري نانو کفا
CHEM 312: Lecture 6 Part 2 Gamma Decay
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Z. Leśnikowski, E. Przelazły, K. Dziedzic-Kocurek, J. Stanek
Ion-beam, photon and hyperfine methods in nano-structured materials
Mr.Halavath Ramesh 16-MCH-001 Department of Chemistry Loyola College-Chennai University of Madras.
Siderophore Reductase FhuF- a Case Study
Presentation transcript:

169 Tm Mössbauer Spectroscopy J.M. Cadogan Department of Physics and Astronomy University of Manitoba Winnipeg, Manitoba, R3T 2N2 Canada

Thulium Thulium is a Lanthanide metal (Rare-Earth) with an atomic number of 69. Tm 3+ has an outer electronic configuration of 4f 12 and an electronic ground-state 3 H 6 (J=6, L=5, S=1) The free-ion magnetic moment of Tm 3+ is 7 B.

Experimental The 169 Tm source is made by neutron irradiation of 168 Er The intrinsic 169 Tm linewidth is about 25 times larger than that of 57 Fe. The low recoil energy of 169 Tm allows measurements up to ~ 1000 K.

169 Tm: comparison with 57 Fe 169 Tm 57 Fe E (keV) Excited state half-lifetime (ns) 498 Source half-life (d) 9270 Internal conversion coefficient 2208 Recoil energy (meV) Isotopic abundance (%) Magnetic moment (nuclear ground state) ( N ) Magnetic moment (nuclear excited state) ( N ) Quadrupole moment (excited state) (b)

The 169 Tm Mössbauer transition is a 3/2 1/2 transition, the same as that of 57 Fe. However, the energy splittings are 2 orders of magnitude larger.

Some examples of 169 Tm Mössbauer studies Tm 2 Ge 2 O 7 (5-fold symmetry ?) TmFe 2 (crystal-field effects and magnetic order) Tm 3 Al 2 & Tm 2 Al (exceptionally slow electronic relaxation)

Tm 2 Ge 2 O 7 Thulium pyrogermanate (TmPG) is tetragonal P The Tm 3+ site (8b) has triclinic symmetry and is coordinated by 7 O 2 ions, forming a distorted pentagonal bipyramid The Tm 3+ triclinic crystal-field hamiltonian contains 27 terms. A pentagonal hamiltonian has only 5 terms (an obvious mathematical advantage) ! Can the Tm 3+ magnetism be described using 5-fold symmetry ? (A triclinic symmetry yields 13 non-magnetic singlets whereas a 5-fold symmetry permits 5 magnetic doublets and 3 non-magnetic singlets)

v (mm/s) Rel. Transmission (%) T(K) 169 Tm Mössbauer spectra of TmPG G. A. Stewart, J.M. Cadogan and A.V.J. Edge, J. Phys. Condensed Matter, 4, (1992) The 169 Tm Mössbauer spectra of TmPG are broad quadrupole-split doublets. The temperature dependence of the quadrupole splitting can be fitted in terms of the Tm 3+ crystal field Hamiltonian. QS (mm/s) 5-fold model Triclinic symmetry model

Rel. Transmission (%) 169 Tm Mössbauer spectra of TmFe 2 B. Bleaney, G.J. Bowden, J.M. Cadogan, R.K. Day and J.B. Dunlop. J. Phys. F: Metal Physics, 12, (1982) TmFe 2 is a cubic Laves phase compound. The 169 Tm Mössbauer spectra of TmFe 2 are magnetically-split sextets corresponding to very large hyperfine fields (720 T at 1.3 K). v ( mm/s ) Note the velocity scale: ± 700 mm/s. For comparison, the magnetic splitting of -Fe (a standard calibration material for 57 Fe work) is ± 5.3 mm/s – about the size of two dots on this picture !

169 Tm Mössbauer spectra of TmFe 2 B. Bleaney, G.J. Bowden, J.M. Cadogan, R.K. Day and J.B. Dunlop. J. Phys. F: Metal Physics, 12, (1982) The temperature dependences of the magnetic hyperfine field and the electric quadrupole splitting at the 169 Tm nucleus can be fitted to yield the crystal-field and exchange parameters describing the magnetism of the Tm 3+ ion. B hf (T) T(K) Reduced Quadrupole splitting

Rel. Transmission (%) 169 Tm Mössbauer spectra of Tm 3 Al 2 Slow electronic relaxation G.J. Bowden, J.M. Cadogan, R.K. Day and J.B. Dunlop. J. Phys. F: Metal Physics, 11, (1981): Hyp Int., 39, (1988) Tm 3 Al 2 is tetragonal (P4 2 nm) with 3 Tm sites. The antiferromagnetic ordering temperature is 6 K. 169 Tm Mössbauer spectroscopy shows a fully magnetically split sextet even up to 45 K, indicative of unusually slow electronic relaxation. v (mm/s) 11.6 K 4.2 K 1.3 K 45 K 30 K 18 K