Mathematical Induction

Slides:



Advertisements
Similar presentations
With examples from Number Theory
Advertisements

THE WELL ORDERING PROPERTY Definition: Let B be a set of integers. An integer m is called a least element of B if m is an element of B, and for every x.
Lesson 10.4: Mathematical Induction
Mathematical Induction (cont.)
Review for CS1050. Review Questions Without using truth tables, prove that  (p  q)   q is a tautology. Prove that the sum of an even integer and an.
Mathematical induction Isaac Fung. Announcement ► Homework 1 released ► Due on 6 Oct 2008 (in class)
Copyright © Cengage Learning. All rights reserved. CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION.
Week 5 - Friday.  What did we talk about last time?  Sequences  Summation and production notation  Proof by induction.
1 Mathematical Induction. 2 Mathematical Induction: Example  Show that any postage of ≥ 8¢ can be obtained using 3¢ and 5¢ stamps.  First check for.
Induction and recursion
Induction Sections 41. and 4.2 of Rosen Fall 2008 CSCE 235 Introduction to Discrete Structures Course web-page: cse.unl.edu/~cse235 Questions:
Recursive Definitions Rosen, 3.4. Recursive (or inductive) Definitions Sometimes easier to define an object in terms of itself. This process is called.
1 Intro to Induction Supplementary Notes Prepared by Raymond Wong Presented by Raymond Wong.
Logic: Connectives AND OR NOT P Q (P ^ Q) T F P Q (P v Q) T F P ~P T F
1 Mathematical Induction. 2 Mathematical Induction: Example  Show that any postage of ≥ 8¢ can be obtained using 3¢ and 5¢ stamps.  First check for.
CSE115/ENGR160 Discrete Mathematics 03/22/12 Ming-Hsuan Yang UC Merced 1.
Inductive Proofs Must Have Base Case (value): –where you prove it is true about the base case Inductive Hypothesis (value): –where you state what will.
Discrete Structures Chapter 5: Sequences, Mathematical Induction, and Recursion 5.2 Mathematical Induction I [Mathematical induction is] the standard proof.
Chapter 10 Sequences, Induction, and Probability Copyright © 2014, 2010, 2007 Pearson Education, Inc Mathematical Induction.
1 Section 3.3 Mathematical Induction. 2 Technique used extensively to prove results about large variety of discrete objects Can only be used to prove.
CSE115/ENGR160 Discrete Mathematics 03/29/11 Ming-Hsuan Yang UC Merced 1.
1 Strong Mathematical Induction. Principle of Strong Mathematical Induction Let P(n) be a predicate defined for integers n; a and b be fixed integers.
1 Mathematical Induction. 2 Mathematical Induction: Example  Show that any postage of ≥ 8¢ can be obtained using 3¢ and 5¢ stamps.  First check for.
Induction and Recursion by: Mohsin tahir (GL) Numan-ul-haq Waqas akram Rao arslan Ali asghar.
Copyright © 2007 Pearson Education, Inc. Slide 8-1.
What it is? Why is it a legitimate proof method? How to use it?
Methods of Proof & Proof Strategies
Mathematical Maxims and Minims, 1988
MATH 224 – Discrete Mathematics
Lecture 9. Arithmetic and geometric series and mathematical induction
Induction and recursion
Chapter 6 Mathematical Induction
Mathematical Induction. F(1) = 1; F(n+1) = F(n) + (2n+1) for n≥ F(n) n F(n) =n 2 for all n ≥ 1 Prove it!
CSNB143 – Discrete Structure Topic 5 – Induction Part I.
Math Review Data Structures & File Management Computer Science Dept Va Tech July 2000 ©2000 McQuain WD 1 Summation Formulas Let N > 0, let A, B, and C.
March 3, 2015Applied Discrete Mathematics Week 5: Mathematical Reasoning 1Arguments Just like a rule of inference, an argument consists of one or more.
Discrete Mathematics Tutorial 11 Chin
9.4 Mathematical Induction
Copyright © Zeph Grunschlag, Induction Zeph Grunschlag.
Section 3.3: Mathematical Induction Mathematical induction is a proof technique that can be used to prove theorems of the form:  n  Z +,P(n) We have.
ICS 253: Discrete Structures I Induction and Recursion King Fahd University of Petroleum & Minerals Information & Computer Science Department.
CompSci 102 Discrete Math for Computer Science March 1, 2012 Prof. Rodger Slides modified from Rosen.
CS 103 Discrete Structures Lecture 13 Induction and Recursion (1)
Mathematical Induction Section 5.1. Climbing an Infinite Ladder Suppose we have an infinite ladder: 1.We can reach the first rung of the ladder. 2.If.
Mathematical Induction
Copyright © Zeph Grunschlag, Induction Zeph Grunschlag.
1 2/21/2016 MATH 224 – Discrete Mathematics Sequences and Sums A sequence of the form ar 0, ar 1, ar 2, ar 3, ar 4, …, ar n, is called a geometric sequence.
CompSci 102 Discrete Math for Computer Science March 13, 2012 Prof. Rodger Slides modified from Rosen.
Chapter 5. Section 5.1 Climbing an Infinite Ladder Suppose we have an infinite ladder: 1.We can reach the first rung of the ladder. 2.If we can reach.
Section 5.1. Climbing an Infinite Ladder Suppose we have an infinite ladder: 1.We can reach the first rung of the ladder. 2.If we can reach a particular.
1 Discrete Mathematical Mathematical Induction ( الاستقراء الرياضي )
Mathematical Induction EECS 203: Discrete Mathematics Lecture 11 Spring
3.3 Mathematical Induction 1 Follow me for a walk through...
Chapter 5 1. Chapter Summary  Mathematical Induction  Strong Induction  Recursive Definitions  Structural Induction  Recursive Algorithms.
Mathematical Induction. The Principle of Mathematical Induction Let S n be a statement involving the positive integer n. If 1.S 1 is true, and 2.the truth.
Chapter 1 Logic and Proof.
CSE15 Discrete Mathematics 03/22/17
Advanced Algorithms Analysis and Design
Chapter 3 The Real Numbers.
Induction and recursion
Induction and recursion
Exercise Use mathematical induction to prove the following formula.
Follow me for a walk through...
Applied Discrete Mathematics Week 9: Integer Properties
Mathematical Induction
Follow me for a walk through...
Advanced Analysis of Algorithms
Mathematical Induction
Mathematical Induction
Follow me for a walk through...
Presentation transcript:

Mathematical Induction Rosen 3.3

Basics The Well-Ordering Property - Every nonempty set of nonnegative integers has a least element. Many theorems state that P(n) is true for all positive integers. For example, P(n) could be the statement that the sum of the first n positive integers 1+2+3+ . . . + n = n(n+1)/2 Mathematical Induction is a technique for proving theorems of this kind.

Steps in an Induction Proof Basis step : The proposition is shown to be true for n=1 (or, more generally, the first element in the set) Inductive step: The implication P(n)P(n+1) is shown to be true for every positive integer n (more generally, for every integer element above a lower bound, which could be negative). For nZ+ [P(1)n(P(n)P(n+1))] nP(n)

Example:If p(n) is the proposition that the sum of the first n positive integers is n(n+1)/2, prove p(n) for nZ+. Basis Step: We will show p(1) is true. p(1) = 1(1+1)/2 = 2/2 = 1 Inductive Step: We want to show that p(n)  p(n+1) Assume 1+2+3+4+. . . + n = n(n+1)/2 Then 1+2+3+4+. . . + n + (n+1) = n(n+1)/2 + n+1 = n(n+1)/2 + (n+1)(2/2) = [n(n+1) + 2(n+1)]/2 = [n2 + 3n +2]/2 = [(n+1)(n+2)]/2   Since p(1) is true and p(n)  p(n+1), then p(n) is true for all positive integers n.

If p(n) is the proposition that the sum of the first n odd integers is n2, prove p(n) for nZ+ Induction Proof Basis Step: We will show that p(1) is true. 1 = 12 Inductive Step We want to show that p(n)  p(n+1) Assume 1 + 3 + 5 + 7 + . . .+ (2n-1) = n2 Then 1 + 3 + 5 + 7 + . . .+ (2n-1) + (2n + 1) = n2 + 2n + 1 = (n+1)2   Since p(1) is true and p(n)  p(n+1), then p(n) is true for all positive integers n.

If p(n) is the proposition that prove p(n) when n is a non-negative integer. Inductive Proof Basis Step: We will show p(0) is true. 20 = 1 = 2-1 = 20+1 -1   Inductive step: We want to show that p(n)  p(n+1) Assume 20 + 21 + 22 + 23 + . . . + 2n = 2n+1 - 1, then 20 + 21 + 22 + 23 + . . . + 2n + 2n+1 = 2n+1 - 1 + 2n+1 = 2(2n+1) -1 = 2n+2 - 1 Since p(0) is true and p(n)  p(n+1), then p(n) is true for all nonnegative integers n.

More General Example Let p(n) be the statement that n! > 2n. Prove p(n) for n 4. Inductive Proof: Basis Step: We will show that p(4) is true. 4! = 24 > 24 = 16 Inductive Step: We want to show that k4, p(k) p(k+1). Assume k! > 2k for some arbitrary k4.

n! > 2n (cont.) (k+1)! = (k+1)k! > (k+1)2k (inductive hypothesis) > 2*2k (since k4) = 2k+1 Since p(4) is true and p(n)  p(n+1), then p(n) is true for all integers n4.

Basis Step: We will show that p(1) is true. Let p(n) be the statement that all numbers of the form 8n-2n for nZ+ are divisible by 6 (i.e., can be written as 6k for some kZ). Prove p(n) Inductive Proof Basis Step: We will show that p(1) is true. 81-21 = 6 which is clearly divisible by 6. Inductive Step: We must show that [kZ+ (8k-2k) is divisible by 6(8k+1-2k+1) is divisible by 6].

Divisible by 6 Example (cont.) 8k+1 - 2k+1 = 8(8k) - 2k+1 = 8(8k) -8(2k) + 8*2k - 2k+1 = 8(8k-2k) + 8*2k - 2k+1 = 8(8k-2k) + 8*2k - 2*2k = 8(8k-2k) + 6*2k By the inductive hypothesis 8(8k-2k) is divisible by 6 and clearly 6*2k is divisible by 6. Thus 8k+1 - 2k+1 is divisible by 6. Since p(1) is true and p(n)  p(n+1), then p(n) is true for all positive integers n.

Prove that 21 divides 4n+1 + 52n-1 whenever n is a positive integer Basis Step: When n = 1, then 4n+1 + 52n-1 = 41+1 + 52(1)-1 = 42+5 = 21 which is clearly divisible by 21. Inductive Step: Assume that 4n+1 + 52n-1 is divisible by 21. We must show that 4n+1+1 + 52(n+1)-1 is divisible by 21.

4n+1+1 + 52(n+1)-1 = 4*4n+1 + 52n+2-1 = 4*4n+1 + 25*52n-1 = 4*4n+1 + (4+21) 52n-1 = 4(4n+1+ 52n-1) +21*52n-1 The first term is divisible by 21 by the induction hypothesis and clearly the second term is divisible by 21. Therefore their sum is divisible by 21.

Second Principle of Mathematical Induction (Strong Induction) Basis Step: The proposition p(1) is shown to be true. Inductive Step: It is shown that [p(1)p(2) … p(n)]  p(n+1) is true for every positive integer n. Sometimes have multiple basis steps to prove.

Example of Strong Induction Consider the sequence defined as follows: b0 = 1 b1 =1 bn = 2bn-1 + bn-2 for n>1 1,1, 3,7, 17,… b0, b1, b2, b3, b4,…. Prove that bn is odd

Inductive Proof Using Strong Induction Basis Cases: (One for n=0 and one for n=1 since the general formula is not applicable until n>1, but it involves both b0 and b1.) b0 = b1 = 1 so both b0 and b1 are odd. Inductive Step: Consider k>1 and assume that bn is odd for all 0  n  k. We must show that bk+1 is odd.

Proof Example (cont.) From the formula we know that bk+1 = 2bk + bk-1. Clearly the first term is even. By the inductive hypothesis the second term is odd. Since the sum of an even integer and an odd integer is always odd (which we proved in number theory), then bk+1 is odd. In this example we did not need all p(n), 0nk, but we did need p(k) and p(k-1). Note that a proof using weak induction would only be able to assume p(k).