DNA repair and mutagenesis BIOL122a Prof. Sue Lovett.

Slides:



Advertisements
Similar presentations
BC34C DNA Repair Mechanisms Dr Mark Ashby Room 45/lab2. Lecture 1 Mon Oct 27 8am Lecture 2 Tue Oct.
Advertisements

DNA replication and repair
DNA Repair. -Errors (at a rate of 1x10 -9 ) are introduced during DNA replication -DNA in cells is constantly being altered by cellular constituents,
DNA damage and repair summary
BEH.109: Laboratory Fundamentals in Biological Engineering. MODULE 3 Eukaryotic Cells as Phenotypic Indicators: The use of RNAi to modulate gene expression.
DNA: Structure, Dynamics and Recognition Les Houches 2004 L2: Introductory DNA biophysics and biology.
Isolation of Mutants; Selections, Screens and Enrichments
1 DNA Repair Dr Derakhshandeh. 2 For DNA information must be transmitted intact to daughter cells.
DNA damage & repair.
DNA damage and repair Types of damage Direct reversal of damage Excision repair in prokaryotes and eukaryotes base excision nucleotide excision Nonhomologous.
Repair mechanisms 1. Reversal of damage 2. Excision repair 3. Mismatch repair 4. Recombination repair 5. Error-prone repair 6. Restriction-modification.
Genetic Material-DNA 6 November 2003 Reading:The Cell; Chapter 5, pages:
DNA damage, repair and recombination
Online Counseling Resource YCMOU ELearning Drive… School of Architecture, Science and Technology Yashwantrao Chavan Maharashtra Open University, Nashik.
1 Lecture 25: DNA mutation, proofreading, and repair Figure 16.7a, c (c) Space-filling model C T A A T C G GC A C G A T A T AT T A C T A 0.34 nm 3.4 nm.
A summary of spontaneous alterations likely to require DNA repair. The sites on each nucleotide that are known to be modified by spontaneous oxidative.
The Damage and Repair of DNA The molecular basis of point mutations 1. Base substitution (mismatches) transition transversion Two main types of DNA damage:
The Mutability and Repair of DNA
Mutation and DNA Repair. Mutation Rates Vary Depending on Functional Constraints.
Karp/CELL & MOLECULAR BIOLOGY 3E
Chapter 20 Repair Systems.
Genetica per Scienze Naturali a.a prof S. Presciuttini Biological repair mechanisms There are many potential threats to the fidelity of DNA replication.
Microbial Genetics (Micr340) Lecture 14 DNA Repair and Mutagenesis.
There are three scholarships for pre-medical students that are available for the academic year. These are: Whatcom County Medical Society Scholarship:
 MUTAGENESIS  DNA DAMAGE  DNA REPAIR  RECOMBINATION.
The Mutability and Repair of DNA
DNA Damage, Mutations, and Repair See Stryer p
Definitions: ★ replication errors ★ spontaneous DNA damage
Dr Mohammad S Alanazi, MSc, PhD Molecular Biology KSU DNA repair: mechanisms, methods to study DNA repair, syndromes.
Mutations, Mutagenesis, and Repair Chapter 10. The Problem DNA extremely long, fragile DNA extremely long, fragile Subject to both physical and chemical.
Biochemistry Sixth Edition Chapter 28 DNA Replication, Repair, and Recombination Part III: DNA repair and recombination Copyright © 2007 by W. H. Freeman.
DNA replication and repair - Lecture 3 Jim Borowiec September 28, 2006.
Mutations and mutagens
DNA REPAIR.
DNA Ligase Energy-dependent joining of the chains Activated by NAD + or ATP hydrolysis NAD  NMN + + AMP ATP  AMP + PP i AMP -attaches to lysine group.
DNA Repair Lehninger, chapters 8 and 25 Blackburn & Gait, Ch. 6 and 8
Genetica per Scienze Naturali a.a prof S. Presciuttini 1. Mechanisms of Spontaneous Mutation The origin of spontaneous hereditary change has always.
Chapter 18 – Gene Mutations and DNA Repair
Various ways in which DNA damage leads to mutations in proteins Insertion.
1 DNA Repair Dr Derakhshandeh-Peykar, PhD. 2 For DNA information must be transmitted intact to daughter cells.
DNA Repair Supplement Read and digest please. Things that Damage DNA 1. Radiation - Cosmic 2. Chemicals - in the environment 3. DNA Replication Accidents.
Lecture 7 DNA repair Chapter 10 Problems 2, 4, 6, 8, 10, 12, and 14
DNA Repair. DNA Damage Tolerance and Repair 1-Dealing with Problems occurring during DNA replication Mutations resulting from errors made during DNA replication.
Chapter 9 The Mutability and Repair of DNA
DNA damage and repair. DNA: the genetic material ensuring preservation of the genetic information preservation of the genetic information its transfer.
DNA Repair DNA repair is a system used to correct DNA damage caused by either: 1-Errors during DNA replication including incorrect base-pairing (mismatching)
Repair of Damaged DNA DNA is the only cellular macromolecule that can be repaired DNA damage includes: base modifications nucleotide deletions or insertions.
Gihan E-H Gawish, MSc, PhD Ass. Professor Molecular Genetics and Clinical Biochemistry KSU 10 TH WEEK DNA damage, repair & Mutagenesis.
Depurination Release of adenine or guanine bases.
DNA Repair. Although DNA replication occurs under strict control (Proofreading system), errors can yet occur and they need to be corrected, otherwise;
DNA repair Of the thousands of random changes created every day in the DNA of a human cell by heat, metabolic accidents, radiation of various sorts, and.
Dr.Aida Fadhel Biawi 2014 Mechanisms of DNA repair.
Genetics NewsGenetics News. Mutation - Overview Mechanism of mutation Spontaneous Induced Duplication/Insertions Mechanism (example: lacI) Fragile X syndrome.
Aim :How are the mistakes that occur during DNA replication repaired?
Lecture 18 DNA Repair Rohini. K. Learning Objective 08 Nov 2011Rohini K FoM 2  An overview of the types of DNA damage  DNA repair mechanisms  Defects.
ReactionBasePairingMutationMispairing DeaminationCGUA ATHypoxanthineC DeaminationGCXanthineC AkylationCG5’-methyl C Gene scilencing or A AkylationGCO6-methyl.
Genetica per Scienze Naturali a.a prof S. Presciuttini DNA REPAIR Questo documento è pubblicato sotto licenza Creative Commons Attribuzione – Non.
MECHANISMS OF DNA REPAIR
DNA damage and repair summary
Variation Mutations DNA repair
DNA damage and repair.
DNA Repair.
Lecture 10 for molecular biology by Dr. Sawsan Saijd
DNA Repair.
Lecture 10 for molecular biology by Dr. Sawsan Saijd
Transcription Course: Molecules to Cells Lecturer: David Mu DNA Repair.
Mutations + Recombination = Genetic Variation!!
DNA Repair.
Mutations + Recombination = Genetic Variation!!
DNA damage, DNA repair and disease
Presentation transcript:

DNA repair and mutagenesis BIOL122a Prof. Sue Lovett

Sources of mutation Natural polymerase error Endogenous DNA damage oxidative damage depurination Exogenous DNA damage radiation chemical adducts “Error-prone” DNA repair

Cellular protection from DNA damage Natural errors: polymerase base selection, proofreading, mismatch repair Endogenous/exogenous DNA damage: base excision repair, nucleotide excision repair, (recombination, polymerase bypass) Recombination and polymerase bypass do not remove damage but remove its block to replication. Polymerase bypass is itself often mutagenic.

Common features of DNA polymerases Right hand: “palm”, “fingers”, “thumb” Palm --> phoshoryl transfer Fingers --> template and incoming nucleoside triphosphate Thumb --> DNA positioning, processivity and translocation Some polymerase have associated 3’ to 5’ exonuclease “proofreading” activity in a second domain

Structures of 4 polymerase classes

Fidelity is increased by action of 3’ to 5’ exonuclease “proofreading” activity Active site of exo is 30 Å from pol, below palm

Contribution of proofreading, base excision repair and MMR to mutation avoidance GenotypeRif r mutants per 10 8 cells Wild-type mut mutD (dnaQ) Pol III proofreading mutS MMR 760 mutY mutM 8-oxoG BER 8200

Base excision repair (BER) Major pathway for repair of modified bases, uracil misincorporation, oxidative damage Various DNA glycosylases recognize lesion and remove base at glycosidic bond, thereby producing an “abasic” or AP (apurinic/ apyrimidinic) site by base “flipping out” One of several AP endonucleases incises phosphodiesterase backbone adjacent to AP site AP nucleotide removed by exonuclease/dRPase and patch refilled by DNA synthesis and ligation

Mechanism of BER

N N NH 2 O O H2CH2C O O N HN O O O H2CH2C O O deoxycytosine deoxyuracil 1’ 2’ 3’ 4’ 5’ CH 3 thymine glycosidic bond

Types of lesions repaired by BER Oxidative lesions; 8-oxo-G, highly mutagenic, mispairs with A, producing GC --> TA transversions example MutY, MutM=Fpg from E. coli Deoxyuracil: from misincorporation of dU or deamination of dC-->dU, example Ung, uracil N- glycosylase Various alkylation products e. g. 3-meA These lesions are not distorting and do not block DNA polymerases Spontaneous depurination (esp. G) yield abasic sites that are repaired by second half of BER pathway

“Flipping out” mechanism

Mismatch repair (MMR) Despite extraordinary fidelity of DNA synthesis, errors do persist Such errors can be detected and repaired by the post- replication mismatch repair system Prokaryotes and eukaryotes use a similar mechanism with common structural features Defects in MMR elevate spontaneous mutation rates x Defects in MMR underlie human predisposition to colon and other cancers (“HNPCC”) MMR also processes mispairs that result from heteroduplex DNA formed during genetic recombination: act to exclude “homeologous” recombination

Mechanism of MMR CH 3 3 5' 3'5' 3' Initiation CH 3 3 5' 3'5' 3' CH 3 3 5' 3'5' 3' MutS MutL MutH Excision CH 3 3 5' 3'5' 3' CH 3 3 5' 3'5' 3' UvrD + RecJ or ExoVIIUvrD + ExoI or ExoX or ExoVII Resynthesis CH 3 3 5' 3'5' 3' CH 3 3 5' 3'5' 3' PolIII + ligase

Mechanism of MMR CH 3 3 5' 3'5' 3' Initiation CH 3 3 5' 3'5' 3' CH 3 3 5' 3'5' 3' MutS MutL MutH Excision CH 3 3 5' 3'5' 3' CH 3 3 5' 3'5' 3' UvrD + RecJ or ExoVIIUvrD + ExoI or ExoX or ExoVII Resynthesis CH 3 3 5' 3'5' 3' CH 3 3 5' 3'5' 3' PolIII + ligase

Basis of MMR recognition MutS dimer (in yeast, Msh2/Msh3 or Msh2/Msh6 heterodimer) By DNA binding expts in vitro and DNA heteroduplex repair expts in vivo: MMR can recognize all base substitutions except C:C and short frameshift loops <4 bp Transition mispairs G:T and A:C and one base loops are particularly well-recognized (these are also the most common polymerase errors)

Structure of MutS bound to DNA 60° kink in DNA Widens minor groove, narrows major groove

The problem of strand discrimination MMR can only aid replication fidelity if repair is targeted to newly synthesized strand In E. coli, this is accomplished by the transient lack of methylation of adenines in GA*TC motifs (by the “Dam” methylase) MutH endonuclease cleaves only unmethylated GATC sites, allowing entry on newly synthesized strand dam mutants are “mutators” and show random repair of either DNA strand In other bacteria and in eukaryotes, the basis of strand discrimination is not understood, although entry at nicks in discontinuously synthesized DNA has been proposed

A T G C A T C G 5’ Heat denature A T G C 5’ A C T G Cool renature homoduplexes + heteroduplexes

A T G C 5’ Heat denature CsCl gradients T 5’ G “heavy strand” “light strand” Single heteroduplex In bacteriophage lambda (40 kb): Transfect, repair G C A T 5’

A T G C Heat denature CsCl gradients T 5’ G “heavy strand” “light strand” hemi-methylated heteroduplex Grow in Dam + :Grow in Dam - : * * * Transfect, Methyl-directed repair 5’ * * * A T

Various Msh and Mlh (Pms1) heterodimers vs. MutS and MutL homodimers Msh2/6 specialized for base substitution mispairs; Msh2/3 for loop mispairs No MutH, Dam; basis for strand discrimination unknown Basis of excision (comparable to UvrD and Exos) incompletely understood Comparison of eukaryotic vs. prokaryotic MMR

Nucleotide excision repair (NER) Recognizes bulky lesions that block DNA replication (i. e. lesions produced by carcinogens)- -example, UV pyrimidine photodimers Common distortion in helix Incision on both sides of lesion Short patch of DNA excised, repaired by repolymerization and ligation In E. coli, mediated by UvrABCD Many more proteins involved in eukaryotes Can be coupled to transcription (TCR, “transcription coupled repair”) Defects in NER underlie Xeroderma pigmentosum

Xeroderma pigmentosum Autosomal recessive mutations in several complementation groups Extreme sensitivity to sunlight Predisposition to skin cancer (mean age of skin cancer = 8 yrs vs. 60 for normal population)

Recognition and binding UvrA acts as classical “molecular matchmaker” Incision Nicks delivered 3’ and 5’ to lesion by UvrBC Excision and repair Short fragment released by helicase action

Proteins Required for Eukaryotic Nucleotide Excision Repair S. cerevisiae proteinHuman proteinProbable function Rad14XPABinds damaged DNA after XPC or RNA pol II Rpa1,2,3 RPAp70,p32,p14 Stabilizes open complex (with Rad14/XPA); positions nucleases Rad4 XPC Works with hHR23B; binds damaged DNA; recruits other NER proteins Rad23 hHR23B Cooperates with XPC (see above); contains ubiquitin domain; interacts with proteasome and XPC Ssl2 (Rad25)XPB3' to 5' helicase Tfb1p62? Tfb2p52? Ssl1 p44DNA binding? Tfb4 p34 DNA binding? Rad3 XPD 5' to 3' helicase Tfb3/Rig2MAT1 CDK assembly factor Kin28 Cdk7CDK; C-terminal domain kinase; CAK Ccl1 CycHCyclin Rad2XPGEndonuclease (3' incision); stabilizes full open complex Rad1XPFPart of endonuclease (5' incision) Rad10ERCC1Part of endonuclease (5' incision)

Human NER Rad1/10 Rad2in S. cerevisiae

Lesion bypass polymerization Replication-blocking lesions such as UV photodimers can be repaired by NER but pose a serious problem if they are in ssDNA As a last resort, cells employ “bypass” polymerases with loosened specificity In E. coli: DinB (PolIV) and UmuD’C (Pol V); homologs in eukaryotes; mutated in XPV These polymerases are “error-prone” and are responsible for UV-induced mutation Expression and function highly regulated: dependent on DNA damage

Characteristics of lesion bypass polymerases Error rate ,000 x higher on undamaged templates Lack 3’ to 5’ proofreading exonuclease activity Exhibit distributive rather than processive polymerization (nt. incorporated per binding event) Support translesion DNA synthesis in vitro

Table 1. Low-fidelity copying of undamaged DNA by specialized DNA polymerases from human cells. [Adapted from P. J. Gearhart and R. D. Wood, Nature Rev. Immunol. 1, 187 (2001)] DNA polymerase Gene Infidelity on undamaged DNA templates (relative to pol  = ~1)  POLB ~50  REV3L ~70  POLK ~580  POLH ~2,000  POLI ~20,000 POLL ? µ POLM ?  POLQ ? Rev1 REV1L ?

Further references Friedberg. DNA repair and mutagenesis. ASM Press, Washington, D. C. *Marti TM, Kunz, C, Fleck O DNA mismatch repair and mutation avoidance pathways. J. Cell. Physiol. 191: *Harfe BD, Jinks-Robertson S DNA mismatch repair and genetic instability. Annu. Rev. Genet. 34: *Krokan, HE, Standal, R, Slupphaug, G DNA glycosylases in the base excision repair of DNA Biochem. J. 325: *De Laat, WL, Jaspers, NGJ, Hoeijmakers, JHJ Molecular mechanism of nucleotide excision repair. Genes Dev. 13: Petit, C, Sancar, A Nucleotide excision repair: from E. coli to man. Biochimie 81: *Goodman, MF, Tippin, B Sloppier copier DNA polymerases involved in genome repair. Curr. Opin. Genet. Dev. 10: *Friedberg, EC, Wagner, R, Radman, M. Specialized DNA polymerases, cellular survival and the genesis of mutations. Science 296: Goodman, MF Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu. Rev. Biochem. 71: 17-50