Equations in Quadratic Form

Slides:



Advertisements
Similar presentations
RATIONAL FUNCTIONS A rational function is a function of the form:
Advertisements

Trigonometric Equations I
The Law of Cosines.
SINE AND COSINE FUNCTIONS
The Law of Sines.
Symmetric about the y axis
SIMPLE AND COMPOUND INTEREST
Integration by Parts.
Relations And Functions. A relation is a set of ordered pairs. {(2,3), (-1,5), (4,-2), (9,9), (0,-6)} This is a relation The domain is the set of all.
2.4: Odd and Even Functions So for an even function, for every point (x, y) on the graph, the.
Mathematical Models Constructing Functions And Optimisation.
Matrices are identified by their size.
If A and B are both m × n matrices then the sum of A and B, denoted A + B, is a matrix obtained by adding corresponding elements of A and B. add these.
< < < > > >         . There are two kinds of notation for graphs of inequalities: open circle or filled in circle notation and interval notation.
Operations on Functions
Solving Quadratic Equations.
Parallel and Perpendicular Lines. Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use.
If a > 0 the parabola opens up and the larger the a value the “narrower” the graph and the smaller the a value the “wider” the graph. If a < 0 the parabola.
PAR TIAL FRAC TION + DECOMPOSITION. Let’s add the two fractions below. We need a common denominator: In this section we are going to learn how to take.
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. If the.
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
SOLVING LINEAR EQUATIONS. If we have a linear equation we can “manipulate” it to get it in this form. We just need to make sure that whatever we do preserves.
TRIGONOMETRIC IDENTITIES
You walk directly east from your house one block. How far from your house are you? 1 block You walk directly west from your house one block. How far from.
INVERSE FUNCTIONS.
The definition of the product of two vectors is: 1 This is called the dot product. Notice the answer is just a number NOT a vector.
Dividing Polynomials.
exponential functions
GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common ratio.
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.
LINEAR Linear programming techniques are used to solve a wide variety of problems, such as optimising airline scheduling and establishing telephone lines.
Properties of Logarithms
Logarithmic and Exponential Equations. Steps for Solving a Logarithmic Equation If the log is in more than one term, use log properties to condense Re-write.
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
SEQUENCES A sequence is a function whose domain in the set of positive integers. So if I gave you a function but limited the domain to the set of positive.
11.3 Powers of Complex Numbers, DeMoivre's Theorem Objective To use De Moivre’s theorem to find powers of complex numbers.
COMPLEX Z R O S. Complex zeros or roots of a polynomial could result from one of two types of factors: Type 1 Type 2 Notice that with either type, the.
Sum and Difference Formulas. Often you will have the cosine of the sum or difference of two angles. We are going to use formulas for this to express in.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
COMPOSITION OF FUNCTIONS “SUBSTITUTING ONE FUNCTION INTO ANOTHER”
Warm Up! Complete the square Quadratic Functions and Models.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
INTRODUCING PROBABILITY. This is denoted with an S and is a set whose elements are all the possibilities that can occur A probability model has two components:
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Let's just run through the basics. x axis y axis origin Quadrant I where both x and y are positive Quadrant II where x is negative and y is positive Quadrant.
Solving Trigonometric Equations Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 x y π π 6 -7 π 6 π 6.
We’ve already graphed equations. We can graph functions in the same way. The thing to remember is that on the graph the f(x) or function value is the.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
TRIGONOMETRIC IDENTITIES
10-7 (r, ).
Systems of Inequalities.
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
THE DOT PRODUCT.
(r, ).
Absolute Value.
Graphing Techniques: Transformations Transformations Transformations
INVERSE FUNCTIONS.
SIMPLE AND COMPOUND INTEREST
INVERSE FUNCTIONS Chapter 1.5 page 120.
Solving Quadratic Equations.
INVERSE FUNCTIONS.
Symmetric about the y axis
exponential functions
Symmetric about the y axis
Rana karan dev sing.
Presentation transcript:

Equations in Quadratic Form The "u" Substitution Method

Set each factor = 0 and solve Before we solve the above equation, let's solve a quadratic equation that we know how to solve. Factor Set each factor = 0 and solve Let's use this to solve the original equation by letting u = x2.

Set each factor = 0 and solve If u = x2 then square both sides and get u2 = x4. Substitute u and u2 for x2 and x4. Factor Set each factor = 0 and solve Now that we've solved for u we have to re-substitute to get x back. Remember u = x2 so let's substitute. Solve for x by square-rooting both sides and don't forget the 

Factor & set each factor = 0 and solve You can determine if an equation is of quadratic form where you can use the "u" substitution method if you call the middle variable and power u and then square it and get the first term's variable and power. So let u = z1/4 and get u2 = z1/2. Substitute u and u2 for z1/4 and z1/2. Factor & set each factor = 0 and solve Solve for z by raising both sides to the 4th power

Factor & set each factor = 0 and solve Let's try one more. Call the middle variable u and then square it to see if you get the first term's variable. So let u = x3 and get u2 = x6. Substitute u and u2 for x3 and x6. Factor & set each factor = 0 and solve Solve for x by taking the cube root of both sides

Acknowledgement I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. www.slcc.edu Shawna has kindly given permission for this resource to be downloaded from www.mathxtc.com and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar www.ststephens.wa.edu.au