Doc.: IEEE 802.11-670r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 1 PAPR Reduction of OFDM by Unitary Transformations Je Woo Kim TeleCIS.

Slides:



Advertisements
Similar presentations
1 Chapter 3 Digital Communication Fundamentals for Cognitive Radio Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski,
Advertisements

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 6 Agile.
Legacy Coexistence – A Better Way?
Doc.: IEEE /389r1 Submission November 2000 Steve Halford and Mark WebsterSlide 1 Overview of OFDM for a High Rate Extension Steve Halford Mark.
Doc.: IEEE /0111r0 Zhanji Wu, et. Al. December 2012 Submission A Physical-layer Network Coding Relay scheme for IEEE Date: Authors:
1Runcom Technologies Ltd. Submission Eli Sofer, Runcom March 2007 Doc.: IEEE /0202r0 Slide 1 Runcom Preamble vs. Phillips Proposed Sequences IEEE.
Doc.: IEEE /383 SG3a Submission Marcus Pendergrass Time Domain Corporation (TDC) September 2002 Project: IEEE P Working Group for Wireless.
An approach to the problem of optimizing channel parameters March 2001 Vlad Oleynik, Umbrella Technology Slide 1 doc.: IEEE /152 Submission.
Doc.: IEEE /202r1 Submission July 2000 Mark Webster, IntersilSlide 1 of 22 Frequency Domain Modulators for b Mark Webster Intersil Corporation.
Frequency Domain Modulators for b
Doc.: IEEE /151r0 Submission 12 March 2001 James P. K. Gilb, MobilianSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
Doc.: IEEE /021r1 Submission December 2000 Jeyhan Karaoguz, Broadcom CorporationSlide 1 Project: IEEE Working Group for Wireless Personal.
Tutorial on Multi Access OFDM (OFDMA) Technology
Doc.: IEEE /290r0 Submission May, 2005 Celestino A. Corral et al., FreescaleSlide 1 Project: IEEE P Working Group for Wireless Personal.
1Runcom Technologies Ltd. Submission Eli Sofer, Runcom January 2005 Doc.: IEEE r1 Slide 1 Tutorial on Multi Access OFDM (OFDMA) Technology.
Doc.: IEEE /388r0 Submission September, 2003 Jaiganesh Balakrishnan et al., Texas InstrumentsSlide 1 Project: IEEE P Working Group for Wireless.
doc.: IEEE <doc#>
0 - 0.
OFDM Transmission over Gaussian Channel
1 OFDM Synchronization Speaker:. Wireless Access Tech. Lab. CCU Wireless Access Tech. Lab. 2 Outline OFDM System Description Synchronization What is Synchronization?
7. Channel Models.
Introduction to Electronic Circuit Design
The Peak-to-Average Power Ratio Problem
Doc.: IEEE /0786r0 Submission July 2010 Daewon Lee, LG ElectronicsSlide 1 Pilot Sequence design up to 8 Spatial Streams Date: Authors:
January 6, 2002doc.: IEEE /044r0 SubmissionRishi Mohindra, MAXIMSlide 1 Proposal for IEEE802.11g Receiver Adjacent Channel Rejection Requirement.
Submission doc.: IEEE 11-14/0353r0 March 2014 Dongguk Lim, LG ElectronicsSlide 1 Suggestion on PHY Abstraction for Evaluation Methodology Date:
Doc.: IEEE /0815r0 Submission July 2012 Ron Porat, Broadcom Q Matrix Requirement for 1MHz/2MHz detection Date: Authors: Slide 1.
Addition 1’s to 20.
Multi Carrier Modulation and OFDM
Doc.: IEEE /825r0 Submission November 2003 Ravi Mahadevappa, Stephan ten Brink, Realtek Slide 1 Comparison of 128QAM mappings/labelings for n.
Chapter 13: Digital Control Systems 1 ©2000, John Wiley & Sons, Inc. Nise/Control Systems Engineering, 3/e Chapter 13 Digital Control Systems.
Cyclic Shift Diversity Design for IEEE aj (45GHz)
Doc.: IEEE n Submission Jan 2004 M.Faulkner, ATcrcSlide 1 Low Overhead Pilot Structures Igor Tolochko and Mike Faulkner, ATcrc, Victoria.
The Impact of Channel Estimation Errors on Space-Time Block Codes Presentation for Virginia Tech Symposium on Wireless Personal Communications M. C. Valenti.
a By Yasir Ateeq. Table of Contents INTRODUCTION TASKS OF TRANSMITTER PACKET FORMAT PREAMBLE SCRAMBLER CONVOLUTIONAL ENCODER PUNCTURER INTERLEAVER.
1 PTS with Non-uniform Phase Factors for PAPR Reduction in OFDM Systems 指導教授 : 蔡育仁 博士 學生姓名 : 黃信智 To appear in IEEE Communications Letters, Jan.
1 Peak-to-Average Power Ratio (PAPR) One of the main problems in OFDM system is large PAPR /PAR(increased complexity of the ADC and DAC, and reduced efficiency.
Doc.: IEEE / 710r0 Submission May 2015 Variable Length Guard Interval for 45GHz Date: Authors: NameAffiliationsAddressPhone Feng.
IERG 4100 Wireless Communications
Design of Expanded Constellations for PAPR Reduction in OFDM Systems Speaker: Dr. Ali Al-Shaikhi Assistant Professor, EE department.
The University of Texas at Austin
Doc.: IEEE /1399r0 Submission November 2014 Multi-Carrier Training Field for OFDM Transmission in aj (45GHz) Authors/contributors: Date:
Dr. Carl R. Nassar, Dr. Zhiqiang Wu, and David A. Wiegandt RAWCom Laboratory Department of ECE.
Doc.: IEEE / 0710r1 Submission May 2015 Gigaray Communication Variable Length Guard Interval for 45GHz Date: Authors: NameAffiliationsAddressPhone .
NTU Confidential Baseband Transceiver Design for the DVB-Terrestrial Standard Baseband Transceiver Design for the DVB-Terrestrial Standard Advisor : Tzi-Dar.
Space-Time and Space-Frequency Coded Orthogonal Frequency Division Multiplexing Transmitter Diversity Techniques King F. Lee.
Doc.: IEEE /1401r0 Submission November 2014 Slide 1 Shiwen He , Haiming Wang Quasi-Orthogonal STBC for SC-PHY in IEEE aj (45GHz) Authors/contributors:
Doc.: IEEE /314r0 Submission March 2004 Taehyun Jeon, ETRISlide 1 Adaptive Modulation for MIMO-OFDM Systems Taehyun Jeon, Heejung Yu, and Sok-kyu.
PAPR Reduction Method for OFDM Systems without Side Information
Simulation Data for Letter Ballot Comments on Quasi-guard Subcarriers and Reverse Link Waveform Lai King (Anna) Tee January 15, 2007.
Doc.: IEEE Submission July 14, 2003 Tewfik/Saberinia, U. of MNSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
Amplifier Nonlinearities in OFDM Multiple Antenna Systems FERNANDO GREGORIO Signal Processing Laboratory HUT.
Wireless Information Transmission System Lab. Institute of Communications Engineering National Sun Yat-sen University Peak-to-Average Power Ratio (PAPR)
Introduction to OFDM and Cyclic prefix
<month year> <doc.: IEEE doc> March 2013
A New Technique for Sidelobe Suppression in OFDM Systems
Space-Time and Space-Frequency Coded Orthogonal Frequency Division Multiplexing Transmitter Diversity Techniques King F. Lee.
Further Rotation Modulation Application
Optimal Receivers in Multipath: Single-Carrier and OFDM
doc.: IEEE <doc#>
Coding and Interleaving
Channel Estimation 黃偉傑.
HDR a solution using MIMO-OFDM
Linglong Dai, Jintao Wang, Zhaocheng Wang and Jun Wang
EE359 – Lecture 17 Outline Announcements Review of Last Lecture
May 2003 doc.: IEEE /141r3 May, 2005 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Ultra-Wideband.
On the Design of RAKE Receivers with Non-uniform Tap Spacing
<month year> doc.: IEEE <04-106> March 2004
Optimal Combining of STBC and Spatial Multiplexing for MIMO-OFDM
STBC in Single Carrier(SC) for IEEE aj (45GHz)
Presentation transcript:

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 1 PAPR Reduction of OFDM by Unitary Transformations Je Woo Kim TeleCIS Wireless, Inc.

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 2 Contents Background for PAPR Reduction in OFDM Delta Frequency Autocorrelation OFDM (DFA- OFDM) by Unitary Transformation Simulation Conclusion References

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 3 Background for PAPR Reduction in OFDM PAPR is one of the major issues for OFDM systems Most of PAPR reduction schemes require side information or suffer from performance degradation : e.g., PTS, SLM, Clipping, etc. PAPR in OFDM can be better than or equal to that of Single-Carrier Modulation without BER performance loss ?

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 4 DFA-OFDM by Unitary Transformation PAPR Reduction –Minimize the power variation of unfiltered time domain signals –Minimize the PAPR after LPF Minimum power variation in time domain signals –Constant power in time domain; this means “delta autocorrelation” in frequency domain (DFA) by Wiener-Khinchine Theorem Minimum PAPR after LPF –Avoid zero crossing as possible with constellation rotation –Results in better than or at least equal to Single-carrier in PAPR

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 5 DFA-OFDM by Unitary Transformation System Block Diagram Figure 1. DFA OFDM block diagram S/P d(j) DFA Trans U(i,j) a IFFT P/S GI b c c GR r(t) Inv. DFA Trans U(i,j) a FFT S/P P/S d(j) H

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 6 Assumptions – M-point IFFT/FFT –TX signal : d(j) (j=0,1,2,…) –input vector : Unitary matrix U Transformed output b is given by DFA-OFDM by Unitary Transformation

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 7 permutation matrix i times permutation of U Transformed signal with U(i) : DFA-OFDM by Unitary Transformation

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 8 The autocorrelation of b is given as If there is a U that results in the delta autocorrelation of b (i.e., ), the time domain signal can be made constant in power : This U is a DFA transformation For BPSK/QPSK modulation (where is one of the ), the sufficient condition for is and For QAM, it is difficult to have DFA transforms, but similar concept can be applied DFA-OFDM by Unitary Transformation

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 9 Typical U matrix for DFA transform Similar Vandermonde matrix is used in [7] using carrier interferometry with DFA-OFDM by Unitary Transformation

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 10 Further PAPR Reduction by Constellation Rotation –With the U matrix (DFA-OFDM), we can make the time domain power constant before LPF, but it may still have high PAPR after LPF. –Find the U(i,j) matrix by constellation rotation that results in minimum PAPR after LPF –This U(i,j) matrix can be found by row and/or column permutation of the given U matrix DFA-OFDM by Unitary Transformation

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 11 Simulation Environment Initial U matrix [7] and P(i) matrix U(i,j)=P(i)UP(j) : DFA Transformation with Constellation Rotation

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 12 Simulation Environment & Results M=64 BPSK/QPSK/16QAM/64QAM 2,000 OFDM symbols for each modulation 39 tap FIR filter Time domain waveforms PAPR BER performance at multi-path fading channel (RMS delay spread = 50ns, g model)

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 13 Simulation results (a) OFDM waveforms(b) DFA-OFDM(i=j=0) waveforms Figure 2. Time domain waveforms (QPSK)

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 14 Simulation results (a) PAPR of QPSK DFA-OFDM (i=0,j=0) (b) PAPR of 16QAM DFA-OFDM (i=0,j=0) Figure 3. PAPR changes before/after LPF

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 15 Simulation results Figure 4. PAPR properties (a) BPSK modulation(c) QPSK modulation

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 16 Simulation results Figure 4. PAPR properties (cont’d) (c) 16-QAM modulation(d) 64-QAM modulation

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 17 Simulation results Figure 5. BER characteristics (multi-path channel: rms delay spread = 50 ns)

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 18 Conclusions DFA transformation -> constant time domain power for BPSK/QPSK modulations Constellation Rotation -> Further reduce the PAPR after LPF This concept can be extended to QAM modulation PAPR in OFDM can be better than that of Single- Carrier Modulation without BER performance loss : –3dB better at BPSK –0.5dB better at QPSK, 16QAM and 64QAM

doc.: IEEE r0 Submission November 2002 Je Woo Kim, TeleCIS WirelessSlide 19 References 1.A. D. S. Jayalah, C. Tellambura and H. Wu, “Reduced complexity PTS and new phase sequences for SLM to reduce PAP of an OFDM signal,” VTC H. Ochiai and H. Imai, “Performance analysis of deliberately clipped OFDM signals”, IEEE Trans. Comm. Vol. 50, No. 1, Jan S.G. Kang, J.G. Kim and E.K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. Broadcasting, Vol. 45, No. 3, September L.J. Cimini,, Jr. and N.R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” IEEE Comm. Letter, Vol. 4, No. 3, March G.R. Hill, M. Faulkner and J. Singh, “Reducing the peak-to-average power ratio in OFDM by cyclically shifting partial transmit sequences,” Electronics Letter, Vol 36, No. 6, March V. Tarokh and H. Jafarkhani, “On the computation and reduction of the peak-to-average power ratio in multicarrier communications,” IEEE Trans. Comm., Vol.48, No. 1, pp , Jan D. A. Wiegandt, C. A. Nassar and Z. Wu, “Overcoming peak-to-average power ratio issues in OFDM via carrier-interferometry codes,” IEEE Proc B. T. Shim, H. J. Lee, J. H. Park, J. W. Kim and K. O. Kim, "On the implementation of spread spectrum MODEM for wireless LAN," Journal of Korean Institute of Communication Sciences (KICS), Jan J. H. Woo, J. W. Kim et al., “A Study on the PAR Reduction for CDMA Reverse Link,” KICS, May 1999.