CSE 370 Sample Final Exam Questions. 1) Logic Minimization CD AB 00011110 00 01 11 10 F = Σm(0,6,7,8,9,11,15) + d(1,13)

Slides:



Advertisements
Similar presentations
Hybrid Infrared and Visible Light Projection for Location Tracking
Advertisements

Abdullah Said Alkalbani University of Buraimi
Date of Birth Design Problem
Counters and Registers
Looking Inside the Black Box
1 X-10 Beyond the Basics EH-Expo, S20, Cell #A Good Afternoon!!! Good Afternoon!!! Welcome to the class. EH-Expo Way X-10 & Intro to Extended Code!
- 1 - Using an SMT Solver and Craig Interpolation to Detect and Remove Redundant Linear Constraints in Representations of Non-Convex Polyhedra Christoph.
Register Transfer and Microoperations Part2
Principles & Applications
Principles & Applications Seven-Segment Displays
Copyright © 2001 Nominum, Inc. IPv6 DNS Ashley Kitto Nominum, Inc.
Fast Algorithms for Finding Nearest Common Ancestors Dov Harel and Robert Endre Tarjan Fast Algorithms for Finding Nearest Common Ancestors SIAM J. COMPUT.
Logic Making decisions
0 - 0.
Binary Numbers.
Binary Numbers.
15 October 2013Birkbeck College, U. London1 Introduction to Computer Systems Lecturer: Steve Maybank Department of Computer Science and Information Systems.
A Simple ALU Binary Logic.
Linear Feedback Shift Registers (LFSR)
CS 105 Tour of the Black Holes of Computing
Monika Gope Lecturer IICT, KUET
Princess Sumaya University
1 Interconnect and Packaging Lecture 3: Skin Effect Chung-Kuan Cheng UC San Diego.
Truth Tables & Logic Expressions
Combinational Logic Circuits
Logic Circuits Basic Building Blocks Dr John Cowell
Introduction to Computer Engineering ECE/CS 252, Fall 2010 Prof. Mikko Lipasti Department of Electrical and Computer Engineering University of Wisconsin.
1 EECS 465: Digital Systems Design Lecture Notes Logic Design Using Compound Components: Multiplexers SHANTANU DUTT Department of Electrical and Computer.
Chapter 3 Digital Logic Structures
Discrete Mathematical Structures: Theory and Applications
Karnaugh Map Adjacent Squares
Digital Systems Introduction Binary Quantities and Variables
Basics Combinational Circuits Sequential Circuits
Digital Logical Structures
Logic Gates. Transistors as Switches ¡V BB voltage controls whether the transistor conducts in a common base configuration. ¡Logic circuits can be built.
Digital Logic Design Gate-Level Minimization
Logic Gates Flip-Flops Registers Adders
Gate-Level Minimization
Chapter 2: The Logic of Compound Statements 2.4 Application: Digital Logic Circuits 1 Only connect! – E. M. Forster, 1879 – 1970 Howards End, 1910.
Logic Gates & Circuits. AND Gate Input AInput BOutput X AND Logic Gate AND Truth Table X = A. B AND Boolean Expression.
Chapter 3 Digital Logic Structures
Karnaugh Map Adjacent Squares
Basic Electronics Ninth Edition Basic Electronics Ninth Edition ©2002 The McGraw-Hill Companies Grob Schultz.
Lecture 11-1 FPGA We have finished combinational circuits, and learned registers. Now are ready to see the inside of an FPGA.
Number Systems (1)  Positional Notation N = (a n-1 a n-2... a 1 a 0. a -1 a a -m ) r (1.1) where. = radix point r = radix or base n = number of.
Arithmetic circuits  Binary addition  Binary Subtraction  Unsigned binary numbers  Sign-magnitude numbers  2 ’ S Complement representation  2 ’
B AB CD C A D m0m1m3m2 m4 m5m7m6 m12 m8m9m11 m10 m13 m15m14 Input combo mintermExpressio n 0000m0A’B’C’D’ 0001m1A’B’C’D 0010m2A’B’CD’
Topics Adders Half Adder Full Adder Subtracter Half Subtracter
Chapter 13 Numerical Issues
CS1022 Computer Programming & Principles
CS 121 Digital Logic Design
Binary Lesson 3 Hexadecimal. Counting to 15 Base Base Base 16 Base Base Base 16 Two Ten (Hex) Two Ten (Hex)
Binary Lesson 3 Hexadecimal. Counting to 15 Base Base Base 16 Base Base Base 16 Two Ten (Hex) Two Ten (Hex)
Princess Sumaya University
Princess Sumaya University
Combinational Circuits
Digital Logic & Design Lecture No. 3. Number System Conversion Conversion between binary and octal can be carried out by inspection.  Each octal digit.
ENEE244-02xx Digital Logic Design Lecture 10. Announcements HW4 due 10/9 – Please omit last problem 4.6(a),(c) Quiz during recitation on Monday (10/13)
ELECTRONICS TECHNOLOGY Digital Devices I Karnaugh Maps
Digital Logic Design Lecture 13. Announcements HW5 up on course webpage. Due on Tuesday, 10/21 in class. Upcoming: Exam on October 28. Will cover material.
Digital Logic Design Lecture 14 based on video from:
and M-ary Quadrature Amplitude Modulation (M-QAM)
1/15/2015 Slide # 1 Binary, Octal and Hex Numbers Copyright Thaddeus Konar Introduction to Binary, Octal and Hexadecimal Numbers Thaddeus Konar.
Synthesis For Finite State Machines. FSM (Finite State Machine) Optimization State tables State minimization State assignment Combinational logic optimization.
Finite State Machines Finite state machines with output
Combinatorial networks- II
ENGIN112 L9: More Karnaugh Maps September 22, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 9 More Karnaugh Maps and Don’t Cares.
Internet Engineering Czesław Smutnicki Discrete Mathematics – Combinatorics.
Review for Exam 1 Chapters 1 through 3.
Examples. Examples (1/11)  Example #1: f(A,B,C,D) =  m(2,3,4,5,7,8,10,13,15) Fill in the 1’s. 1 1 C A B CD AB D 1 1.
Presentation transcript:

CSE 370 Sample Final Exam Questions

1) Logic Minimization CD AB F = Σm(0,6,7,8,9,11,15) + d(1,13)

1) Logic Minimization 11 dd CD AB F = Σm(0,6,7,8,9,11,15) + d(1,13)

1) Prime Implicants 11 dd CD AB Note: Prime Implicant = largest box covering a 1

1) Essential PIs 11 dd CD AB Note: Essential PI = PIs that cover a 1 not covered by any other PIs

1) Logic Minimization 11 dd CD AB Prime Implicants: BC, AD, ABC, BCD Essential Prime Implicants: BC, AD, ABC Minimal Cover: F = BC + AD + ABC

2a) Gates to Functions back into Gates FG H

FG H Z = ~(H + G) Z = ~H & ~G Z = ~(~(C+D)) & ~(~(F+F)) Z = (C+D) & F Z = (C+D) & ~(A+B) Z = (C+D) & ~A & ~B Z = ABC + ABD

2b) Gates to Functions back into Gates Z = ABC + ABD Using deMorgans Law… Z = ~(~(ABC) & ~(ABD)) C A B D

2c) Gates to Functions back into Gates NOR Circuit 3 gate 7ns 21ns total NAND Circuit 2 gate 9ns 18ns total

3a) Multiplexer Logic Z = BC + ABD + AB ABCDZ

3a) Multiplexer Logic Z = BC + ABD + AB ABCDZ

3a) Multiplexer Logic Z = BC + ABD + AB ABCDZ

3a) Multiplexer Logic Z = BC + ABD + AB ABCDZ

3a) Multiplexer Logic Z = BC + ABD + AB ABCDZ

3b) Multiplexer Logic S3S2S1S0 16:1 MUX Z = BC + ABD + AB ABCD

3c) Multiplexer Logic S2S1S0 8:1 MUXZ = BC + ABD + AB 1111 ABC 1DD11DD1 1DD111DD11 01DD110001DD1100 Note: Requires no extra logic

4) Decoder Logic W = (A xor C) + B ABCW

4) Decoder Implementation S2S1S0 3:8 DEC ABC W = (A xor C) + B EN1

5) Programmable Logic X Y Note: 2 Common Prime Implicants can be used by X and Y Z = ABCD + ABCD X = Z + ABCD + ABCD Y = Z + ABC + ABC

5) Programmable Logic Z = ABCD + ABCD X = Z + ABCD + ABCD Y = Z + ABC + ABC Z = ABCD + ABCD X = Z + ABCD + ABCD Y = Z + ABC + ABC

6) Verilog to Circuit

7) Circuit to Verilog

module maxValue (DataOut, strobe, Data); // Port Definitions output reg [7:0] DataOut; input strobe; input [7:0] Data; // Behavioral Statements for DataOut // other required internal signals endmodule

7) Circuit to Verilog // Behavioral Statements for DataOut (posedge clk) begin if (regEnable) DataOut <= Data; else DataOut <= DataOut; end

7) Circuit to Verilog regEnable strobeNegedge prevStrobe[2] prevStrobe[1] prevStrobe[0]

7) Circuit to Verilog // other required internal signals wire regEnable, strobeNegedge; reg prevStrobe[2:0]; assign regEnable = (Data > DataOut) && strobeNegedge assign strobeNegedge = prevStrobe[2] & ~prevStrobe[1]; (posedge clk) prevStrobe = {prevStrobe[1:0],strobe};

8) Carry Look-ahead Adder Recall: Sum = A xor B xor C Cout = AB + BC + AC Rewrite Cout: Cout = AB + C (A + B)

8) Carry Look-ahead Adder ABP XOR P OR 2 functions are only different if A and B are 1

8) Carry Look-ahead Adder Need carry out if A and B are 1 carry is generated in this case dont need propagate to cover this case these are then functionally equivalent Recall: Sum = A xor B xor C P = A + B: have to calculate A xor B P = A xor B: reuse this to compute Sum P = A xor B uses less logic

9) Verilog State Machine ABS[1]NS[0]NS[1]S[0]out

9) Verilog State Machine S[1:0] AB out NS[1] NS[0] S[1:0] AB S[1:0] AB NS[1]=S[0]B + S[1]S[0] NS[0] = S[1]S[0]B + S[1]S[0]A + S[1]S[0]B + S[1]S[0]A out = S[1]S[0]AB + S[1]S[0]AB + S[1]S[0]AB + S[1]S[0]AB

9) Verilog State Machine

10) Design: Parallel to Serial Shift Register Load parallel data Shift out serial data Counter How many bits have shifted out Controller Shift Enable Done Shifting

10a) Design: Parallel to Serial Shifter dataIn load dataOut Counter reset clk count char[7:0] start reset clk Controller clk sdata done Datapath start reset count load reset_cnt done

10b) Design: Parallel to Serial Can we collapse these to 1 state?

10b) Design: Parallel to Serial

10c) Design: Parallel to Serial Shifter dataIn[8:0] load dataOut[8:0] Counter reset clk count clk sdata= dataOut[0] done = state[1] {char,1b0} start clk dataOut[8:0] Register nextState[1] clk state Note: Shifter shifts in 1 in MSB clk count[3:0] clk state[1:0] start + state[1] + state[1:0]==0 + ((state==1)&&(count==4hA) ~start && (state==1) && (count==4hA) nextState[0] start + ((state==1)&&(count<4hA)) char[7:0] start reset clk

11) x370 CALL Instruction CALL Requirements Load address into PC from instruction Store PC+1 into RD

11) Implementation Load address into PC inst[5:0] muxed to input of PC Load PC asserted Store PC+1 into RD PC muxed to A input of ALU ALU inst set to INC ALU output muxed to reg write data Reg write address set to R D

Final Questions?