EXAMPLE 1 Write an equation of a line from a graph

Slides:



Advertisements
Similar presentations
Writing Equations of a Line
Advertisements

Warm up Write an equation given the following info:
Graph a linear equation Graph: 2x – 3y = -12 Solve for y so the equation looks like y = mx + b - 3y = -2x – 12 Subtract 2x to both sides. y = x + 4 Divide.
Write an equation given the slope and a point
Parallel and Perpendicular Lines
Parallel and Perpendicular Lines
1. (1, 4), (6, –1) ANSWER Y = -x (-1, -2), (2, 7) ANSWER
SOLUTION EXAMPLE 3 Determine whether lines are perpendicular Line a: 12y = –7x + 42 Line b: 11y = 16x – 52 Find the slopes of the lines. Write the equations.
Write an equation given the slope and a point EXAMPLE 2 Write an equation of the line that passes through (5, 4) and has a slope of –3. Because you know.
3.5 Write and Graph Equations of Lines
Write an equation given the slope and y-intercept EXAMPLE 1 Write an equation of the line shown.
EXAMPLE 1 Solve a quadratic equation having two solutions Solve x 2 – 2x = 3 by graphing. STEP 1 Write the equation in standard form. Write original equation.
EXAMPLE 3 Write an equation of a line given two points
EXAMPLE 1 Write an equation of a line from a graph
Write an equation given two points
Substitute 0 for y. Write original equation. To find the x- intercept, substitute 0 for y and solve for x. SOLUTION Find the x- intercept and the y- intercept.
Substitute 0 for y. Write original equation. To find the x- intercept, substitute 0 for y and solve for x. SOLUTION Find the x- intercept and the y- intercept.
Writing Equations of a Line. Various Forms of an Equation of a Line. Slope-Intercept Form.
WRITE EQUATIONS OF PARALLEL AND PERPENDICULAR LINES November 20, 2008 Pages
2.4 Essential Questions What is the point-slope form?
EXAMPLE 1 Identifying Slopes and y -intercepts Find the slope and y -intercept of the graph of the equation. a. y = x – 3 b. – 4x + 2y = 16 SOLUTION a.
Notes Over 2.1 Graphing a Linear Equation Graph the equation.
Solve an equation using addition EXAMPLE 2 Solve x – 12 = 3. Horizontal format Vertical format x– 12 = 3 Write original equation. x – 12 = 3 Add 12 to.
Warm up Recall the slope formula:
3.5 Write and Graph Equations of Lines You will find equations of lines. Essential Question: How do you write an equation of a line?
SOLUTION EXAMPLE 3 Determine whether lines are perpendicular Line a: 12y = – 7x + 42 Line b: 11y = 16x – 52 Find the slopes of the lines. Write the equations.
1. If 2x + 5y = –20 and x = 0, what is y? ANSWER –4
5.6 Parallel and Perpendicular Equations
1. Write the equation in standard form.
4-9 Slopes of Parallel and Perpendicular Lines Warm Up
1. If 2x + 5y = –20 and x = 0, what is y? ANSWER –4
1. If 2x + 5y = –20 and x = 0, what is y? ANSWER –4
Writing Equations of a Line
Objectives Identify and graph parallel and perpendicular lines.
Quick Graphs of Linear Equations
Writing Equations of a Line
Parallel and Perpendicular Lines
Linear Equations in two variables
Parallel and Perpendicular Lines
Day 7 – Parallel and Perpendicular lines
3.4 Notes: Equations of Lines
Warm up (10/28/15) Write an equation given the following info:
PARALLEL LINES Graphs: Lines Never Intersect and are in the same plane
Writing Equations of Lines
3.5 Write and Graph Equations of Lines
Objectives Identify and graph parallel and perpendicular lines.
5-5 Parallel and Perpendicular Lines
Warm up (3/28/17) Write an equation given the following info:
Writing the Equation of a Line
EXAMPLE 1 Write an equation of a line from a graph
Geometry Section 3.5.
PARALLEL LINES Graphs: Lines Never Intersect and are in the same plane
Warm up Write an equation given the following information.
Warm up Write an equation given the following info:
Warm up Write an equation given the following info:
Warm up Write an equation given the following info:
Writing Equations of a Line
Warm up Write an equation given the following info:
Substitute either point and the slope into the slope-intercept form.
Solve Systems of Equations by Graphing
5.4 Finding Linear Equations
Drill #76 Write the equation of the line (in Slope-Intercept Form) passing through the following point with the given slope: 1. m = 4, (2, 3) 2. m =
Parallel and Perpendicular Lines
6-1 System of Equations (Graphing)
PARALLEL LINES Graphs: Lines Never Intersect and are in the same plane (coplanar) Equations: Same Slopes Different y-intercepts.
Warm up (10/22/14) Write an equation given the following info:
3.5 Write and Graph Equations of Lines
Slope-Intercept Form.
Open ended Question Review…
Presentation transcript:

EXAMPLE 1 Write an equation of a line from a graph Write an equation of the line in slope- intercept form. SOLUTION STEP 1 Find the slope. Choose two points on the graph of the line, (0, 4) and (3, –2). m 4 – (– 2) 0 – 3 = 6 – 3 = = – 2 STEP 2 Find the y-intercept. The line intersects the y-axis at the point (0, 4), so the y-intercept is 4.

Write an equation of a line from a graph EXAMPLE 1 Write an equation of a line from a graph STEP 3 Write the equation. mx + b y = Use slope-intercept form. y = –2x + 4 Substitute – 2 for m and 4 for b.

EXAMPLE 2 Write an equation of a parallel line Write an equation of the line passing through the point (– 1, 1) that is parallel to the line with the equation y = 2x – 3. SOLUTION STEP 1 Find the slope m. The slope of a line parallel to y = 2x –3 is the same as the given line, so the slope is 2. STEP 2 Find the y-intercept b by using m = 2 and (x, y) = (– 1, 1).

Write an equation of a parallel line EXAMPLE 2 Write an equation of a parallel line y mx + b = Use slope-intercept form. 1 = 2 (–1 ) + b Substitute for x, y, and m. 3 = b Solve for b. Because m = 2 and b = 3, an equation of the line is y = 2x + 3.

Write an equation of a perpendicular line EXAMPLE 3 Write an equation of a perpendicular line Write an equation of the line j passing through the point (2, 3) that is perpendicular to the line k with the equation y = – 2x + 2. SOLUTION STEP 1 Find the slope m of line j. Line k has a slope of – 2. – 2 m = – 1 The product of the slopes of lines is – 1. 1 2 m = Divide each side by – 2.

Write an equation of a perpendicular line EXAMPLE 3 Write an equation of a perpendicular line 1 2 STEP 2 Find the y-intercept b by using m = and (x, y) = (2, 3). mx + b y = Use slope-intercept form. 3 = 1 2 ( 2 ) + b Substitute for x, y, and m. 2 = b Solve for b.

EXAMPLE 3 Write an equation of a perpendicular line Because m = and b = 2, an equation 1 2 of line j is y = x + 2. You can check that the lines j and k are perpendicular by graphing, then using a protractor to measure one of the angles formed by the lines.

GUIDED PRACTICE for Examples 1, 2 and 3 Write an equation of the line in the graph at the right. y = – 1 2 3 x ANSWER Write an equation of the line that passes through (– 2, 5) and (1, 2). ANSWER y = –x + 3

GUIDED PRACTICE for Examples 1, 2 and 3 Write an equation of the line that passes through the point (1, 5) and is parallel to the line with the equation y = 3x – 5. Graph the lines to check that they are parallel. ANSWER y = 3x + 2

GUIDED PRACTICE for Examples 1, 2 and 3 How do you know the lines x = 4 and y = 2 are perpendicular? x = 4 is a vertical line while y = 2 is a horizontal line. SAMPLE ANSWER