Compounds in which carbon is the principal element.

Slides:



Advertisements
Similar presentations
Naming Hydrocarbons (nomenclature)
Advertisements

Functional Groups.
Organic Chemistry IB.
Organic Chemistry Chapter 22.
Organic Chemistry.
Naming Hydrocarbons (nomenclature) Drawing Structures: It’s All Good 2-butene This is called the “condensed structure” CH 3 CH=CHCH 3 Using brackets.
Chapter 9 Carbon & Its Compounds.
Organic Chemistry Objectives: 1.state general properties and describe some reactions of organic compounds 2.describe the bonding between atoms in molecules.
Organic Chemistry  Organic chemistry is the study of carbon containing compounds derived from living organisms.
Section 20.1 Saturated Hydrocarbons 1.To understand the types of bonds formed by the carbon atom 2.To learn about the alkanes 3.To learn about structural.
Chapter 25 Organic and Biological Chemistry. Organic Chemistry The chemistry of carbon compounds. Carbon has the ability to form long chains. Without.
Carbon and Hydrocarbons & Other Organic Compounds
Organic Chemistry New Section in Table of Contents.
Classifying Organic Compounds
Naming Hydrocarbons (nomenclature) Basic Naming of Hydrocarbons Hydrocarbon names are based on: 1)Type, 2)# of carbons, 3)side chain type and position.
Organic Chemistry Study of molecular compounds of carbon.
Organic chemistry.
The basis for organic chemistry
Christopher G. Hamaker, Illinois State University, Normal IL
Hydrocarbons Unsaturated hydrocarbons
Organic Compounds Carbon Bonding Forms 4 covalent bonds in chains or rings 1.
Organic Chemistry Nomenclature: Alkanes AlkenesAlkynes.
Naming Organic Compounds. What is an organic Compound? A compound consisting of carbon. Most consist only of carbon, oxygen, hydrogen and nitrogen.
Organic Chemistry Brown, LeMay Ch 25 AP Chemistry.
Organic Chemistry Chapter 22.
Organic Chemistry Template from: PresenterMedia.comPresenterMedia.com.
CHAPTER 23 ORGANIC CHEMISTRY. The Nature of Organic Molecules Carbon is tetravalent. It has four outer-shell electrons (1s 2 2s 2 2p 2 ) and forms four.
Organic Chemistry Nomenclature: Alkanes AlkenesAlkynes.
Organic Chemistry Chapter 22.
Chapter 22 Organic and Biological Chemistry
Ch 22: Organic Chemistry.
1 Chapter 22 Organic Chemistry!!!!! Chapter 6 in rxn workbook Chapter 16 in PR.
Organic Chemistry Topic 10.1 CHONCCHONC bonds.
II. Naming Hydrocarbons (nomenclature)
Organic Chemistry Saturated Hydrocarbons Petroleum Reactions of Alkanes Unsaturated Hydrocarbons Aromatic Hydrocarbons Alcohols Aldehydes and Ketones Carboxylic.
Organic Chemistry Mr. Calmer Lawndale High School.
Carbon: More Than Just Another Element Chapter 10.
Hydrocarbons The basis for organic chemistry. Organic Compounds Contain C bonded to other elements, commonly H, O, N, S, and halogens Carbon –Can form.
Chapter 12 Organic and Biological Chemistry. Organic Chemistry The chemistry of carbon compounds. Carbon has the ability to form long chains. Without.
Organic Chemistry Carbon is the basis of organic chemistry Carbon has the ability to make 4 covalent bonds. Carbon can repeatedly make covalent bonds to.
Organic Chemistry Organic chemistry is the study of carbon based compounds - This field of chemistry is very important because all living things and many.
Organic Chemistry. Prefixes 1.Meth- 2.Eth- 3.Prop- 4.But- 5.Pent- 6.Hex- 7.Hept- 8.Oct- 9.Non- 10.Dec- Count number of carbons in longest chain.
INTRODUCTORY CHEMISTRY INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin 1 Chapter 19 © 2011 Pearson Education,
Chapter 20 Organic Chemistry. Organic Compounds Organic compounds all contain carbon –CO, CO 2, carbonates are inorganic –Other common elements found.
Fundamentals of Organic Chemistry CHONCCHONC bonds.
TOPIC 11 REVIEW BOOK TABLES P, Q AND R Organic Chemistry.
Dr. Nesma Mamdouh Bayoumy
Brown, LeMay Ch 25 AP Chemistry
Organic Chemistry = the study of carbon and most carbon compounds.
Organic Chemistry Organic chemistry is the study of carbon containing compounds derived from living organisms.
Simple Organic Chemistry
Naming Hydrocarbons (nomenclature)
NAMING Organic Chemistry
1.2 Hydrocarbons Naming Alkanes.
Introduction Most of the advances in the pharmaceutical industry are based on a knowledge of organic chemistry. Many drugs are organic compounds.
Organic Chemistry Benzene The Condensed Version.
Hydrocarbon Compounds
Naming Hydrocarbons (nomenclature)
The basis for organic chemistry
Simple Organic Chemistry Basic Structure and Nomenclature
Carbon Chemistry Carbon is unusual
The basis for organic chemistry
Brown, LeMay Ch 25 AP Chemistry
Organic Chemistry = the study of carbon and most carbon compounds.
Organic Chemistry = ______________________ ________________________.
ORGANIC CHEMISTRY.
Organic Chemistry.
LATE ABASAHEB KAKADE ART’S & SCIENCE COLLEGE , BODHEGAON
Ch. 22 Hydrocarbons.
Simple Organic Chemistry
Presentation transcript:

Compounds in which carbon is the principal element. Organic Nomenclature Compounds in which carbon is the principal element.

Writing formulas. . . Condensed: CH3CH(CH3)CH = CHCH(CH3)CH3 Kekule’ Skeletal

Hydrocarbons. . . Contain only hydrogen and carbon. Types: Alkane: single bonds; saturated (largest possible number of hydrogens/carbon atom. [CnH2n+2] Alkene: one or more carbon-carbon double bond. Unsaturated hydrocarbon. Alkyne: one carbon-carbon triple bond. Unsaturated hydrocarbon. Aromatic: carbon atoms connected in a planar ring. Unsaturated hydrocarbon.

Hydrocarbons. . . Relatively nonpolar. (covalent bonds) Insoluble in water. (like dissolves like) Less volatile with increasing molar mass. (because of London dispersion forces)

Alkanes. . . [CnH2n+2] Methane: CH4 major component of natural gas; home heating; gas stoves; hot water heaters Ethane: C2H6 Propane: C3H8 used for home cooking and heating; gas grills Butane: C4H10 disposable lighters and fuel canisters for gas camping stoves.

Name consists of. . . 1. Prefix 2.Parent 3. Suffix Where are the substituents? 2.Parent How many carbons in the longest chain? 3. Suffix Which family? If two different chains of equal length are present: choose the one with the larger number of branch points as the parent.

pent=5; hex=6; hept=7; oct=8; non=9; dec= 10 Rules for naming alkanes. . . Longest continuous chain of carbon atoms gives the root name 1. For alkanes, add –ane to the root: Meth: C Eth: C2 Prop: C3 But: C4 2. For alkanes beyond butane, use the Greek root for the number of carbons then add -ane to the end. C-C-C-C-C-C = hexane pent=5; hex=6; hept=7; oct=8; non=9; dec= 10

Group(s) added in place of a removed hydrogen. Substituent Group(s) added in place of a removed hydrogen.

Alkanes as a substituent group. . . Alkyl substituents: 1. Remove a hydrogen from the alkane. C2H6 is ethane 2. Drop the -ane and add -yl. -C2H5 is ethyl

Positions of substituent groups are specified by numbering the longest chain sequentially. (Use the lowest number for the position of the substituent group) The location and name of the substituent group is followed by root alkane name. C C-C-C-C-C-C 3-methylhexane

Substituents in alphabetical order. Use di-, tri-, etc. to indicate multiple identical substituents.

Practice. . .write skeletal and condensed formulas. 2,3-dimethylhexane 2-ethyl-3-methylpentane 4-ethyl-3,5-dimethylnonane 4-tert-butylheptane 2,3-dimethylpentane

Cyclic Alkanes. . . CnH2n Cycloalkanes Smaller than five carbons, very reactive. Rings of carbon atoms. Isomers Cis: both substituents are on the same side of the ring. Trans: substituents are on opposite sides of the ring.

Reactions of Alkanes. . . . Combustion: react with oxygen produce carbon dioxide and water Substitution: halogen atoms replace hydrogen atoms Dehydrogenation reactions:hydrogen removed forms double bond there unsaturated hydrocarbon is the product

Alkenes. . . 1. Root hydrocarbon (longest chain containing double bond) name ends in –ene. 2. More than three carbon atoms, the location of the double bond is indicated by the lowest numbered carbon atom in the bond. If equidistant: begin at end closer to substituent group. CH2=CHCH2CH3 1-butene CH3CH=CHCH3 2- butene 3. More than one double bond Indicate the position of each and use –diene, triene, tetraene. . .

Cycloalkenes. . . Name same as alkenes. Number so double bond is between C1 and C2 and the first substituent has the lowest number possible.

Practice. . .write the skeletal formula and name. CH2=CHCH(CH3)C(CH3)(CH3)CH3 CH3CH2CH=C(CH3)CH2CH3 CH3CH=CHCH(CH3)CH=CHCH(CH3)CH3

Practice. . . 2-methyl-1,5-hexadiene 3-ethyl-2,2dimethyl-3-heptene 2,3,3-trimethyl-1,4,6-octatriene 4-tert-butyl-2-methylheptane 3,4-diisopropyl-2,5-dimethyl-3-hexene

Practice. . . CH3 CH(CH3)2 CH3

Alkynes. . . Unsaturated hydrocarbons contain atleast one triple carbon-carbon bond. -yne replaces –ane. Begin numbering chain at end closest to triple bond. More than one bond: -diynes, -triynes. Double and triple bonds: -enynes Start numbering from end nearer first bond. (if there is a choice. Usually double bonds get lower numbers than triple.)

Practice. . . CH3CH(CH3)C CCH(CH3)CH3 CH CC(CH3)(CH3)CH3 CH3CH=CHCH=CHC CCH3 CH3CH2C(CH3)(CH3)C CCH2CH2CH3

Practice. . .

Reactions of Alkenes and Alkynes. . . Addition reactions: double bond broken and new bonds formed to atoms added. Hydrogenation reactions: addition of hydrogen atoms Halogenation: addition of a halogen Elimination:one reactant splits apart to give two products. Substitutions: two reactants exchange parts to give two new products. Rearrangement:one reactant undergoes a reorganization of bonds and atoms to give a new product.

Aromatic Hydrocarbons. . . Benzene and its structural relatives Monosubstituted benzene: named as other hydrocarbons, with benzene as parent name. If substituent larger than ring (six carbons) : benzene becomes substituent group called phenyl. Disubstituted benzene: ortho:1,2 meta-1,3 para-1,4 More than two: number the position of each substituent group.

Alcohols. . . Alcohols: presence of an –OH (hydroxyl group) Nomenclature: replace final -e of parent hydrocarbon with –ol. (parent: longest chain containing –OH) Position of –OH specified by number- lowest number. Classified by: number of hydrocarbon fragments bonded to carbon where –OH group is attached. eg. C-C-C-C or C-C-C-C or C C-C-C

Functional Groups

Alcohols. . . . Polar Higher boiling points than expected from molecular weights. Intermolecular attractions. –OH extensive hydrogen bonding.

Practice. . . CH3C(OH)(CH3)CH2CH2CH3 2methyl-2-pentanol CH3CH(OH)CH2CH(OH)CH(CH3)2 5-methyl-2,4-hexanediol

Practice. . .

Practice. . . 2-ethyl-2-buten-1-ol 3-cyclohexen-1-ol 3-chlorocycloheptanol 1,4-pentanediol

Aldehydes. . . Nomenclature: remove –e replace with –al. Longest chain as base name,must contain the carbonyl group. Aldehyde carbon assigned number 1, when subtituent positions are listed in the name. Bonded to at least one hydrogen atom. Number indicates position of carbonyl group.

Practice. . .

Practice. . . CH3CHO Ethanal CH3CH2CHO Propanal CH3CH(CH3)CH2CH(CH2CH3)CHO 2-ethyl-4-methylpentanal

Ketones. . . Contain carbonyl group bonded to two carbon atoms Final –e replaced with -one. Longest chain with ketone group is the parent. Numbering begins at the end nearest the carbonyl carbon.

Practice. . . CH3CH=CHCH2COCH3 4-hexen-2-one CH3CH2COCH2COCH3 2,4-hexanedione CH3CH2COCH(CH3)2 2-methyl-3-pentanone CH3COCH2CH2CH2COCH2CH3 2,6-octanedione

Practice. . . OHCCH2CH2CH2CHO Pentanedial CH3CH2CH(CH3)CH(CH2CH2CH3)COCH3 4-methyl-3propyl-2-hexanone CH3CH=CHCH2CH2CHO 4-hexenal

Practice. . . 3-methylbutanal 3-methyl-3-butenal 4-chloro-2-pentanone

Carboxylic Acids. . . Two systems: aldehyde and alcohol Derived from open chain alkanes: Carboxyl carbon is always C1. Replace terminal –e of alkane with –oic acid. -COOH group bonded to a ring, the suffix –carboxylic acid is used. The carboxylic acid carbon is attached to C1 and is not itself numbered in this system.

Practice. . . CH3CH(CH3)CH2CH2COOH 4-methylpentanoic acid HOOCCH2CH(CH2CH3)CH2CH2CH(CH3)CH2COOH 3-ethyl-6-methyloctanedioic acid

Practice. . .

Practice. . . (CH3)2CHCH2COOH 3-methylbutanoic acid CH3CHBrCH2CH2COOH 4-bromopentanoic acid CH3CH=CHCH=CHCOOH 2,4-hexadienoic acid CH3CH2CH(COOH)CHCH2CH2CH3 2-ethylpentanoic acid

Carboxylic Acids. . . Strong hydrogen bonding has a noticeable effects on boiling points. Much higher than corresponding alcohols.

Isomerism