Guillaume De l'Hôpital 1661 - 1704 8.7 day 1 L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid.

Slides:



Advertisements
Similar presentations
8.1: L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons, and then.
Advertisements

Guillaume De l'Hôpital day 1 LHôpitals Rule Actually, LHôpitals Rule was developed by his teacher Johann Bernoulli. De lHôpital paid Bernoulli.
8.7: Identifying Indeterminate Forms Brooklyn Bridge, New York City Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2008.
5.3 Definite Integrals and Antiderivatives Organ Pipe Cactus National Monument, Arizona Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie.
Guillaume De l'Hôpital L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli.
L’Hôpital’s Rule. Another Look at Limits Analytically evaluate the following limit: This limit must exist because after direct substitution you obtain.
L’Hôpital’s Rule.
4.4 L’Hôpital’s Rule. Zero divided by zero can not be evaluated, and is an example of indeterminate form. Consider: If we direct substitution, we get:
Guillaume De l'Hôpital : Indeterminate forms and L’Hospital’s Rule.
3.6 The Chain Rule Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2002.
5.4 Fundamental Theorem of Calculus Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1998 Morro Rock, California.
3.9: Derivatives of Exponential and Logarithmic Functions Mt. Rushmore, South Dakota Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie.
2.1: Rates of Change & Limits Greg Kelly, Hanford High School, Richland, Washington.
2.1 Rates of Change and Limits Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2007 Grand Teton National Park, Wyoming.
5.3 Definite Integrals and Antiderivatives Greg Kelly, Hanford High School, Richland, Washington.
If we zoom in far enough, the curves will appear as straight lines. The limit is the ratio of the numerator over the denominator as x approaches a.
Guillaume De l'Hôpital L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli.
Guillaume De l'Hôpital Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De L’Hôpital paid Bernoulli for private lessons,
What makes an expression indeterminate? Consider: We can hold one part of the expression constant: There are conflicting trends here. The actual limit.
B.E. SEM 1 ELECTRICAL DIPARTMENT DIVISION K GROUP(41-52) B.E. SEM 1 ELECTRICAL DIPARTMENT DIVISION K GROUP(41-52)
8.7 L’Hôpital’s Rule. Zero divided by zero can not be evaluated, and is an example of indeterminate form. Consider: If we direct substitution, we get:
L’Hopital (Lo-pee-tal) was a French mathematician who wrote the first calculus textbook Remember back in the limits unit when we evaluated a limit and.
Extra L’Hôpital’s Rule. Zero divided by zero can not be evaluated, and is an example of indeterminate form. Consider: If we try to evaluate this by direct.
Rules for Differentiation Colorado National Monument Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003.
5.4 Fundamental Theorem of Calculus Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1998 Morro Rock, California.
3.3 Rules for Differentiation Colorado National Monument Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003 The “Coke Ovens”,
Chapter 7: Exponential Functions
Guillaume De l'Hôpital day 1 L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid.
6.3 Integration By Parts Badlands, South Dakota Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1993.
5-7 Rational Exponents Objectives Students will be able to:
5.5 Bases Other than e and Applications (Part 1) Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2008 Acadia National Park,
Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2001 London Bridge, Lake Havasu City, Arizona 3.4 Derivatives of Trig Functions.
2.1: Rates of Change & Limits Greg Kelly, Hanford High School, Richland, Washington.
The Chain Rule Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2002 online.math.uh.edu/HoustonACT/Greg_Kelly.../Calc03_6.ppt.
Guillaume De l'Hôpital : L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli.
Bell Ringer Solve even #’s.
2.3 The Product and Quotient Rules (Part 1)
Rates of Change and Limits
Rates of Change and Limits
4.4 L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons, and then.
7-5: L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons, and then.
Unit 4 – Exponential, Logarithmic, and Inverse Trigonometric Functions
4.4: Indeterminate forms and L’Hospital’s Rule Guillaume De l'Hôpital
Indeterminate Forms and L’Hopital’s Rule
Guillaume De l'Hôspital
8.2 day 1 L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons,
3.7: Indeterminate forms and L’Hospital’s Rule Guillaume De l'Hôpital
3.6 The Chain Rule Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 2002.
or write out factors in expanded form.
5.3 Definite Integrals and Antiderivatives
3.6 The Chain Rule Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 2002.
8.1: L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons, and then.
Lesson 8.1 How do you use properties of exponents involving products?
3.9: Derivatives of Exponential and Logarithmic Functions
2.2 Limits Involving Infinity
L’Hôpital’s Rule Part I
8.7: L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons, and then.
9.2 L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons, and then.
7.7 L’Hôpital’s Rule Guillaume De l'Hôpital
2.4 The Chain Rule (Part 2) Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 2002.
3.5 The Chain Rule Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 2002.
8.2 Day 2: Identifying Indeterminate Forms
3.9: Derivatives of Exponential and Logarithmic Functions
2.5 Limits Involving Infinity
Bell-ringer 9/21/09 Graph the function:
Rates of Change and Limits
5.3 Definite Integrals and Antiderivatives MLK JR Birthplace
3.7: Derivatives of Exponential and Logarithmic Functions
Limits Involving Infinity
Identifying Indeterminate Forms
Presentation transcript:

Guillaume De l'Hôpital day 1 L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons, and then published the first Calculus book based on those lessons. Greg Kelly, Hanford High School, Richland, Washington

Johann Bernoulli day 1 L’Hôpital’s Rule

Zero divided by zero can not be evaluated, and is an example of indeterminate form. Consider: If we try to evaluate this by direct substitution, we get: In this case, we can evaluate this limit by factoring and canceling:

If we zoom in far enough, the curves will appear as straight lines. The limit is the ratio of the numerator over the denominator as x approaches 2.

As becomes:

As becomes:

L’Hôpital’s Rule: If is indeterminate, then:

We can confirm L’Hôpital’s rule by working backwards, and using the definition of derivative:

Example: If it’s no longer indeterminate, then STOP! If we try to continue with L’Hôpital’s rule: which is wrong, wrong, wrong!

On the other hand, you can apply L’Hôpital’s rule as many times as necessary as long as the fraction is still indeterminate: not (Rewritten in exponential form.) =

L’Hôpital’s rule can be used to evaluate other indeterminate forms besides. The following are also considered indeterminate: The first one,, can be evaluated just like. The others must be changed to fractions first.

This approaches We already know that but if we want to use L’Hôpital’s rule: = =

If we find a common denominator and subtract, we get: Now it is in the form This is indeterminate form L’Hôpital’s rule applied once. Fractions cleared. Still = = =

L’Hôpital again. = = =

Indeterminate Forms: Evaluating these forms requires a mathematical trick to change the expression into a fraction. When we take the log of an exponential function, the exponent can be moved out front. We can then write the expression as a fraction, which allows us to use L’Hôpital’s rule. We can take the log of the function as long as we exponentiate at the same time. Then move the limit notation outside of the log.

Indeterminate Forms: L’Hôpital applied Example: = = = = = =

8.7 Notes – Part 2: Identifying Indeterminate Forms Brooklyn Bridge, New York City Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2008

What makes an expression indeterminate? Consider: We can hold one part of the expression constant: There are conflicting trends here. The actual limit will depend on the rates at which the numerator and denominator approach infinity, so we say that an expression in this form is indeterminate.

Let’s look at another one: Consider: We can hold one part of the expression constant: Once again, we have conflicting trends, so this form is indeterminate.

Finally, here is an expression that looks like it might be indeterminate : Consider: We can hold one part of the expression constant: The limit is zero any way you look at it, so the expression is not indeterminate.

Here is the standard list of indeterminate forms: There are other indeterminate forms using complex numbers, but those are beyond the scope of this class. 