Quantum Theory and the Atom

Slides:



Advertisements
Similar presentations
-The Bohr Model -The Quantum Mechanical Model
Advertisements

Electron Configuration and New Atomic Model Chapter 4.
The Arrangement of Electrons in Atoms
Electrons. Wave model – scientist say that light travels in the form of a wave.
Section 2: Quantum Theory and the Atom
Pre-IB/Pre-AP CHEMISTRY
The Atom and Unanswered Questions
The Development of a New Atomic Model.
Entry Task: October 15 th Monday Question: Does it take more energy for the painter to get to the middle of the ladder or the top? You have 5 minutes!!
Section 2: Quantum Theory and the Atom
Chpt. 3: Arrangement of Electrons in The Atom. Remember from Crookes experiment: when cathode rays (electrons) struck glass at far end of tube they caused.
ch.4 quiz practice problems:121(1-6) standard: 1g terms: 127 mastering concept: 146(39-58) article: 131 Cornell notes: sec 5.2 Sec. Assessment: 134 (13-15)
Chapter. 5: Electrons in Atoms
Concept #4 “Electrons in the Atom” Honors Chemistry 1.
Chapter 4 Notes for those students who missed Tuesday notes.
The Quantum Model of the Atom
Review of 5.1: All waves have distinct amplitudes, frequency, periods and wavelengths. All electromagnetic waves travel at the speed of light. C = (3.0x10.
-The Bohr Model -The Quantum Mechanical Model Chemistry.
-The Bohr Model -The Quantum Mechanical Model Warner SCH4U Chemistry.
Arrangement of Electrons. Spectroscopy and the Bohr atom (1913) Spectroscopy, the study of the light emitted or absorbed by substances, has made a significant.
Chapter 5 : Electrons in Atoms. Problems with Rutherford’s Model Chlorine # 17 Reactive Potassium # 19 Very reactive Argon # 18 Not reactive.
Leading up to the Quantum Theory.  exhibits wavelike behavior  moves at a speed 3.8 × 10 8 m/s in a vacuum  there are measureable properties of light.
Electrons in Atoms Chapter 5. Duality of Light Einstein proved that matter and energy are related E = mc 2 Einstein proved that matter and energy are.
-The Bohr Model -The Quantum Mechanical Model Mrs. Coyle Chemistry.
Section 2: Quantum Theory and the Atom
Quantum Theory and the Atom
1 Mr. ShieldsRegents Chemistry U06 L03 2 Bohr Model e - transitions from a higher energy levels to lower energy levels release energy in the form of.
Quantum Theory the modern atomic model. Bohr Model of the Atom a quantum model proposed by Niels Bohr in 1913 It helped to explain why the atomic emission.
Bohr vs the quantum mechanical model of the atom
The Development of a New Atomic Model  The Rutherford model of the atom was an improvement over previous models of the atom.  But, there was one major.
Chapter 5 Electrons in Atoms Chemistry Section 5.1 Light and Quantized Energy At this point in history, we are in the early 1900’s. Electrons were the.
River Dell Regional High School Unit 3 – Electron Configurations Part C: Quantum Mechanical Model.
The Dilemma  Particles have mass and a specific position in space (matter)  Waves have NO mass and NO specific position in space (light and energy)
Light and Energy Electromagnetic Radiation is a form of energy that emits wave-like behavior as it travels through space. Examples: Visible Light Microwaves.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Table of Contents Chapter 4 Arrangement of Electrons in Atoms Section.
Chapter 5 Electrons in Atoms Honors Chemistry Section 5.1 Light and Quantized Energy At this point in history, we are in the early 1900’s. Electrons.
The Quantum Model of the Atom CP Chemistry. Louie de Broglie Proposed that all particles of matter that move exhibit wave like behavior (even a baseball!)
Electrons in Atoms Chapter Wave Nature of Light  Electromagnetic Radiation is a form of energy that exhibits wavelike behavior as it travels through.
Do Now: Complete Calculating Average Atomic Mass Worksheet.
Chapter 11 Notes Electrons in Atoms: Modern Atomic Theory.
Light, Quantitized Energy & Quantum Theory CVHS Chemistry Ch 5.1 & 5.2.
Modern Model of the Atom The emission of light is fundamentally related to the behavior of electrons.
Chapter 11 Modern Atomic Theory. Rutherford’s Atom What are the electrons doing? How are the electrons arranged How do they move?
Light Light is a kind of electromagnetic radiation, which is a from of energy that exhibits wavelike behavior as it travels through space. Other forms.
Chapter 7 Atomic Structure.
The Quantum Mechanical Model Chemistry Honors. The Bohr model was inadequate.
-The Bohr Model -The Quantum Mechanical Model
Quantums numbers & the probability of where an electron may be found
Chapter 5 section 1 models of the atom.
The Bohr Model, Wave Model, and Quantum Model
Electromagnetic Radiation
5-1 Quantum Theory of the atom
DO NOW Pick up notes. Computer Half-Life Simulation is due tomorrow.
2.4 Modern Atomic Structure Objectives 4, 5:b, and 6:a
Section 3: The Quantum Mechanical Model of the Atom
Chapter 5 Arrangement of electrons in atoms
Quantum Theory and the Atom
5.2 QUANTUM THEORY & ATOM.
Electrons in Atoms Chapter 5.
Chapter 5 Electrons in Atoms.
Unit 3 – Electron Configurations Part C: Quantum Mechanical Model
Quantum Theory and the Atom
Bohr Model of the Atom Why are the emission spectra of elements not a continuous spectrum? In 1913, a Danish physicist named Niels Bohr tried to discover.
ELECTRONS IN ATOMS.
Section 5.2 Quantum Theory and the Atom
Section 2: Quantum Theory and the Atom
Unit 4: Electrons in the Atom
Quantum Theory and the Atom
The Bohr Model, Wave Model, and Quantum Model
Bohr vs the quantum mechanical model of the atom
Presentation transcript:

Quantum Theory and the Atom Section 5.2 Quantum Theory and the Atom

Objectives Compare the Bohr and quantum mechanical models of the atom. Explain the impact of De Broglie’s wave-particle duality and the Heisenberg uncertainty principle on the modern view of electrons in atoms. Identify the relationships among a hydrogen atom’s energy levels, sublevels, and atomic orbitals.

Quantum Theory and the Atom Einstein’s theory of light’s dual nature accounted for several unexplainable phenomena but it did not explain the atomic emission spectra of elements. In 1913, Niels Bohr (who was working for Rutherford) proposed a quantum model for the hydrogen atom that seemed to do that.

The Bohr Model of the Atom Bohr proposed that the hydrogen atom can have only certain allowable energy states. The lowest allowable energy state is called the ground state. When an atom gains energy, it is said to be in an excited state. Many ”excited” states are possible.

Bohr’s Atomic Model Bohr said that hydrogen’s energy states were related to the motion of its electrons. He said hydrogen’s electron moved in certain allowed circular orbits around the nucleus. The closer the orbit was to the nucleus, the smaller the orbit was AND the lower the atom’s energy level.

The Planetary Model Bohr’s model came to be known as the planetary model.

Bohr assigned a quantum number (n) to each orbit.

Interpreting the Data Bohr was able to explain the line spectra of hydrogen this way: Hydrogen is in its ground state when its electron is in the n = 1 orbit. If enough energy is added, the electron can move to n = 2. It is then excited and unstable. Since the electron is unstable, it will not remain in n=2 but will drop back to n = 1.

Interpreting the Data The energy that was absorbed is now released as a photon. The energy of the photon (Ephoton = hf) is equal to the energy difference between n = 2 and n = 1.

In Other Words . . . ΔE (energy released) = Ehigher energy orbit - Elower energy orbit = hf Only certain amounts of energy are given off so only certain frequencies are emitted. That means these frequencies/spectral lines correspond to electron transfers between one specific n (or energy level) to another specific n.

Each spectral line in an AES will represent one possible electron transfer.

Hydrogen’s Line Spectrum The AES that falls in the visible range of the EM spectrum is pictured. n=3 to n=2 produces a red line n=4 to n=2 produces a blue-green line n=5 to n=2 produces a blue line n=6 to n=2 produces a violet line Note that the energy levels are not evenly spaced from one another.

Unanswered Questions . . . Bohr’s planetary model failed to explain the AES for elements other than hydrogen. It also failed to account for chemical behavior of atoms.

The Quantum Mechanical Model By the 1920’s, scientists were convinced that Bohr’s model was fundamentally incorrect. New explanations of how electrons were arranged in atoms were formed. Louis De Broglie (1892-1987)

Quantum Mechanical Model De Broglie knew that when light traveled through space, it behaved like a wave. He also knew that when light interacted with matter, its behavior was like that of a stream of particles. He thought that if energy had a dual nature then maybe matter did too…

Quantum Mechanical Model De Broglie believed that all moving particles of matter, like electrons, had wave characteristics. He referred to the wavelike behavior of particles as matter waves. He derived an equation to describe the matter waves: λ = h (m =mass) mv (v = velocity)

Quantum Mechanical Model

Quantum Mechanical Model In 1927, Werner Heisenberg proposed his uncertainty principle: it is impossible to know both the position and velocity of a moving object at the same time. He believed any attempt to determine an object’s position would change its velocity and vice versa.

For example Suppose you had to locate a helium-filled balloon in a dark room. To locate it, you would touch it with your hand. Such an act would cause a change in the velocity of the balloon. Hence, you cannot know the position and velocity at the same time.

Quantum Mechanical Model But what if you used a flashlight? You would locate the balloon when the light bounced off it and hit your eyes. The balloon is so much more massive then the photons that they will have “no effect” on the balloon’s position.

Quantum Mechanical Model What about locating electrons? Could they be hit with a photon (which would then bounce back to some detection device)? No - Heisenberg’s Uncertainty Principle applies. Because the electron has such a small mass, its collision with a photon would move it in some unpredictable way.

Quantum Mechanical Model What we know so far The energy of electrons is quantized. (Electrons can only have certain amounts of energy.) Electrons exhibit wavelike characteristics and behavior. We cannot experiment with electrons to determine their nature - position and velocity of an electron are impossible to know at the same time.

Quantum Mechanical Model In 1926, Erwin Schrodinger furthered the wave-particle theory of de Broglie. He deriving a mathematical equation that described hydrogen atom’s electron as a wave.

Quantum Mechanical Model This new model seemed to apply equally well to atoms of other elements. The atomic model in which the electron is treated as a wave is called the quantum mechanical model of the atom.

Quantum Mechanical Model An electron’s energy is limited to certain values. An electron’s path around the nucleus is not circular but is described in terms of probability. The probability of finding an electron in various locations around the nucleus can be pictured in terms of a blurry cloud of negative charge. The Schrodinger wave equation is too complex to be considered here, however each solution to the equation is known as a wave function. The wave function is related to the probability of finding the electron within a particular volume of space around the nucleus

Quantum Mechanical Model The cloud is most dense where the probability of finding the electron is highest. The boundary of the “electron cloud” encloses the area that has a 90% probability of containing electrons. The probability of finding electrons in certain regions of an atom is described by orbitals.

Quantum Mechanical Model Because electrons have different energies, they are found in different probable locations around the nucleus. An atomic orbital is a 3-d region around the nucleus of an atom where an electron with a given energy is likely to be found. Orbitals (not orbits) have characteristic shapes, sizes and energies.

Quantum Mechanical Model A principle quantum number (n) is assigned to indicate the relative SIZE & ENERGY of atomic orbitals. As n increases, the orbital becomes larger and is further away from the nucleus. An atom’s principal energy levels are specified by n.

Quantum Mechanical Model Each principal energy level consists of one or more sublevels . . . As n increases, the # of sublevels increases as does their distance from the nucleus. Just like your home address consists of a state, a city and a street name within the city, the “address” of an electron consists of its principal energy level, its sublevel and its orbital within that sublevel.

Quantum Mechanical Model Sublevels are labeled s, p, d, or f, according to the shapes of their orbitals. For n=1, there is one sublevel. It is called “s”, specifically “1s” For n=2, there are 2 sublevels. They are called “s” and “p” (or 2s ,2p). For n=3, there are 3 sublevels. They are called . . . .? Just as proposed in the Bohr model, the energy of the electron increases as n increases. Unlike the Bohr model, however, each principal energy level is divided into one or more sublevels. The number of sublevels in each principal energy = the quantum number n for that energy level. There is one sublevel when n=1, two sublevels when n=2 and so on. These sublevels are labeled with a number that is the value of the quantum number n and a letter (s, p, d or f) that corresponds to the type of sublevel. As we go on keep in mind the definition of an orbital – region in which an electron with a particular energy is likely to be found.

Quantum Mechanical Model Each type of sublevel consists of one or more orbitals. There is 1 “s” orbital There are 3 “p” orbitals There are 5 “d” orbitals There are 7 “f” orbitals

Quantum Mechanical Model All s orbitals are spherical. They will differ in size.

Quantum Mechanical Model All p orbitals are dumbbell-shaped. There are 3 p orbitals because the dumbbell shape can be oriented in 3 different ways in space. d and f orbitals are very complex in shape. See pg. 133. P orbitals are dumbbell shaped.

Quantum Mechanical Model Review The energy level or principal quantum number is designated by n. The number of sublevels always equals the quantum number n. For n = 1, the one sublevel is s. For n = 2, the two sublevels are s and p. For n = 3, the three sublevels are s, p, and d. For n = 4, the four sublevels are s, p, d, and f.

Quantum Mechanical Model The number of orbitals in each sublevel is always an odd number: s has 1 orbital; p has 3 orbitals; d has 5 orbitals; f has 7 orbitals. The total number of orbitals in each energy level = n2 (In n= 3, there are 9 orbitals: 1 s, 3 p , and 5 d.) Each orbital may contain at most 2 electrons. The maximum number of electrons in each energy level = 2n2 See the summary - pg. 134