Law of Sines The Ambiguous Case

Slides:



Advertisements
Similar presentations
The Law of Sines and The Law of Cosines
Advertisements

7.1 Right Triangle Trigonometry. A triangle in which one angle is a right angle is called a right triangle. The side opposite the right angle is called.
Solve SAA or ASA Triangles Solve SSA Triangles Solve Applied Problems
Math III Accelerated Chapter 13 Trigonometric Ratios and Functions 1.
The Law of Sines and The Law of Cosines
Module 8 Lesson 5 Oblique Triangles Florben G. Mendoza.
Math 112 Elementary Functions Section 1 The Law of Sines Chapter 7 – Applications of Trigonometry.
Unit 4: Trigonometry Minds On
Math 112 Elementary Functions Section 2 The Law of Cosines Chapter 7 – Applications of Trigonometry.
Assignment Trig Ratios III Worksheets (Online) Challenge Problem: Find a formula for the area of a triangle given a, b, and.
The Law of COSINES.
The Law of SINES.
Triangles- The Ambiguous Case Lily Yang Solving Triangles If you are given: Side-Side-Side (SSS) or Side-Angle-Side (SAS), use the Law of Cosines.
Law of Cosines Trigonometry MATH 103 S. Rook. Overview Section 7.3 in the textbook: – Law of Cosines: SAS case – Law of Cosines: SSS case 2.
Ambiguous Case Triangles
Laws of Sines. Introduction  In the last module we studied techniques for solving RIGHT triangles.  In this section and the next, you will solve OBLIQUE.
Warm – Up Solve the following triangles for the missing side or angle: 1) 2) 3) 9 10 x 27° 32° 14 8 x 48°
Lesson 6.1 Law of Sines. Draw any altitude from a vertex and label it k. Set up equivalent trig equations not involving k, using the fact that k is equal.
Chapter 5: Trigonometric Functions Lesson: Ambiguous Case in Solving Triangles Mrs. Parziale.
Law of Cosines MATH Precalculus S. Rook. Overview Section 6.2 in the textbook: – Law of Cosines 2.
Law of Sines & Law of Cosines
Quiz 5-5 Solve for the missing angle and sides of Triangle ABC where B = 25º, b = 15, C = 107º Triangle ABC where B = 25º, b = 15, C = 107º 1. A = ? 2.
Trigonometry January 6, Section 8.1 ›In the previous chapters you have looked at solving right triangles. ›For this section you will solve oblique.
9.5 Apply the Law of Sines When can the law of sines be used to solve a triangle? How is the SSA case different from the AAS and ASA cases?
6.1 Laws of Sines. The Laws of Sine can be used with Oblique triangle Oblique triangle is a triangle that contains no right angle.
6.1 Law of Sines Objective To use Law of Sines to solve oblique triangles and to find the areas of oblique triangles.
Law of Sines Lesson Working with Non-right Triangles  We wish to solve triangles which are not right triangles B A C a c b h.
5.5 Law of Sines. I. Law of Sines In any triangle with opposite sides a, b, and c: AB C b c a The Law of Sines is used to solve any triangle where you.
Section 5-5 Law of Sines. Section 5-5 solving non-right triangles Law of Sines solving triangles AAS or ASA solving triangles SSA Applications.
6.1 Law of Sines. Introduction Objective: Solve oblique triangles To solve: you must know the length of one side and the measures of any two other parts.
If none of the angles of a triangle is a right angle, the triangle is called oblique. All angles are acute Two acute angles, one obtuse angle.
In section 9.2 we mentioned that by the SAS condition for congruence, a triangle is uniquely determined if the lengths of two sides and the measure of.
Notes Over 8.1 Solving Oblique Triangles To solve an oblique triangle, you need to be given one side, and at least two other parts (sides or angles).
Chapter 6.  Use the law of sines to solve triangles.
Math /7.2 – The Law of Sines 1. Q: We know how to solve right triangles using trig, but how can we use trig to solve any triangle? A: The Law of.
Chapter 8 Section 8.2 Law of Cosines. In any triangle (not necessarily a right triangle) the square of the length of one side of the triangle is equal.
Lesson 6.5 Law of Cosines. Solving a Triangle using Law of Sines 2 The Law of Sines was good for: ASA- two angles and the included side AAS- two angles.
Section 4.2 – The Law of Sines. If none of the angles of a triangle is a right angle, the triangle is called oblique. An oblique triangle has either three.
Section Take a note: Up until now, our work with triangles has involved right triangles, And for that we use the Pythagorean Theorem. But there.
Law of Sines AAS ONE SOLUTION SSA AMBIGUOUS CASE ASA ONE SOLUTION Domain error NO SOLUTION Second angle option violates triangle angle-sum theorem ONE.
Unit 4: Trigonometry Minds On. Unit 4: Trigonometry Learning Goal: I can solve word problems using Sine Law while considering the possibility of the Ambiguous.
Quiz 13.5 Solve for the missing angle and sides of Triangle ABC where B = 25º, b = 15, C = 107º Triangle ABC where B = 25º, b = 15, C = 107º 1. A = ? 2.
Law of Sines and Cosines Section 4.7. Mastery Objectives Solve oblique triangles by using the Law of Sines or the Law of Cosines. Find areas of oblique.
Sullivan Algebra and Trigonometry: Section 9.2 Objectives of this Section Solve SAA or ASA Triangles Solve SSA Triangles Solve Applied Problems.
What you’ll learn Use the Law of Sines to solve oblique triangles. Use the Law of Sines to solve, if possible, the triangle or triangles in the ambiguous.
LAW of SINES.
Section T.5 – Solving Triangles
If none of the angles of a triangle is a right angle, the triangle is called oblique. All angles are acute Two acute angles, one obtuse angle.
9.1 Law of Sines.
6.1 Law of Sines Objectives:
Ambiguous Case Triangles
Warm up sin cos −1 2 2 cos tan −1 − 3 tan −1 tan 2
Warm up sin cos −1 2 2 cos tan −1 − 3 tan −1 tan 2
The Law of Sines.
Laws of Sines.
Law of Cosine Chapter 8.3.
The Laws of SINES and COSINES.
8-5 The Law of Sines Geometry.
Do Now If the legs of the right triangle are 4 and 5 find the hypotenuse and all the angles.
Section 6.1.
Law of Sines AAS ONE SOLUTION SSA AMBIGUOUS CASE ASA ONE SOLUTION
Law of Cosines.
5.5 Law of Sines.
15G – 15J Sine and Cosine Rules
Law of Sines and Law of Cosines
Ambiguous Case Triangles
7.2 The Law of Sines.
Law of Sines (Lesson 5-5) The Law of Sines is an extended proportion. Each ratio in the proportion is the ratio of an angle of a triangle to the length.
The Law of Sines.
Section 6.1 The Law of Sines
Presentation transcript:

Law of Sines The Ambiguous Case Section 6-1

… this means we can solve them! Angle Side Angle - ASA In geometry, triangles can be uniquely defined when particular combinations of sides and angles are specified … this means we can solve them! Angle Side Angle - ASA Angle Angle Side – AAS We solved these using Law of Sines Then there are these theorems … Side Side Side – SSS Side Angle Side – SAS We’ll soon solve these using the Law of Cosines (section 6.2)

Side Side Angle - SSA There’s one left … There’s a problem with solving triangles given SSA … You could find… No solution One solution Two solutions In other words … its AMBIGUOUS … unclear Let’s take a look at each of these possibilities.

Remember now … the information we’re given is two consecutive sides and the next angle … If this side isn’t long enough, then we can’t create a triangle … no solution So, then, what is the “right” length so we can make a triangle? An altitude … 90 degree angle … a RIGHT triangle! Turns out this is an important calculation … it’s a = b sin θ If a = b sin θ, then there is only one solution for this triangle. The missing angle is the complement to θ The missing side can be found using Pythagorean theorem of trigonometry. b a θ

BOTH! What if side a is a little too long … what would that look like? a > b sin θ This leg can then either swing left … or right. So? … which one of these triangles do you solve? … BOTH! First, solve the acute triangle … and find angle B by Law of Sines! Then solve for the remaining parts of the acute triangle a b θ B

Lastly, solve the obtuse triangle … This next step is critical … angle B’ is ALWAYS the supplement to angle B. B’ = 180 – m< B Next, solve the remaining parts of the obtuse triangle. a b θ B’ B

What if side a is larger than side b? Here’s the last scenario while θ is acute … What if side a is larger than side b? In this case, only one triangle can exist … an acute triangle which can easily be solved using law of sines. Too long to create a triangle on this side. a θ