Forecasting Introduction

Slides:



Advertisements
Similar presentations
Agenda of Week V. Forecasting
Advertisements

Forecasting OPS 370.
Forecasting the Demand Those who do not remember the past are condemned to repeat it George Santayana ( ) a Spanish philosopher, essayist, poet.
Operations Management Forecasting Chapter 4
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
What is Forecasting? A forecast is an estimate of what is likely to happen in the future. Forecasts are concerned with determining what the future will.
T T18-03 Exponential Smoothing Forecast Purpose Allows the analyst to create and analyze the "Exponential Smoothing Average" forecast. The MAD.
Forecasting 5 June Introduction What: Forecasting Techniques Where: Determine Trends Why: Make better decisions.
Qualitative Forecasting Methods
Forecasting Ross L. Fink.
Chapter 12 - Forecasting Forecasting is important in the business decision-making process in which a current choice or decision has future implications:
Forecasting.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Chapter 3 Forecasting McGraw-Hill/Irwin
Operations Management Forecasting Chapter 4
Forecasting McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Business Forecasting Chapter 5 Forecasting with Smoothing Techniques.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Chapter 6 Forecasting n Quantitative Approaches to Forecasting n Components of a Time Series.
Slides by John Loucks St. Edward’s University.
LSS Black Belt Training Forecasting. Forecasting Models Forecasting Techniques Qualitative Models Delphi Method Jury of Executive Opinion Sales Force.
Time Series “The Art of Forecasting”. What Is Forecasting? Process of predicting a future event Underlying basis of all business decisions –Production.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 15 Demand Management & Forecasting
IES 371 Engineering Management Chapter 13: Forecasting
Production Planning and Control. 1. Naive approach 2. Moving averages 3. Exponential smoothing 4. Trend projection 5. Linear regression Time-Series Models.
Demand Management and Forecasting
CLASS B.Sc.III PAPER APPLIED STATISTICS. Time Series “The Art of Forecasting”
© 2006 Prentice Hall, Inc.4 – 1 Forcasting © 2006 Prentice Hall, Inc. Heizer/Render Principles of Operations Management, 6e Operations Management, 8e.
Operations Management
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna Forecasting.
Chapter 6 Forecasting n Quantitative Approaches to Forecasting n The Components of a Time Series n Measures of Forecast Accuracy n Using Smoothing Methods.
Chapter 7 Forecasting n Quantitative Approaches to Forecasting n The Components of a Time Series n Measures of Forecast Accuracy n Using Smoothing Methods.
Forecasting Professor Ahmadi.
Time-Series Forecasting Learning Objectives 1.Describe What Forecasting Is 2. Forecasting Methods 3.Explain Time Series & Components 4.Smooth a Data.
1 DSCI 3023 Forecasting Plays an important role in many industries –marketing –financial planning –production control Forecasts are not to be thought of.
Operations Management For Competitive Advantage 1Forecasting Operations Management For Competitive Advantage Chapter 11.
MBA.782.ForecastingCAJ Demand Management Qualitative Methods of Forecasting Quantitative Methods of Forecasting Causal Relationship Forecasting Focus.
Introduction to Forecasting IDS 605 Spring Forecasting 4 A forecast is an estimate of future demand.
Forecasting February 26, Laws of Forecasting Three Laws of Forecasting –Forecasts are always wrong! –Detailed forecasts are worse than aggregate.
To Accompany Ritzman & Krajewski, Foundations of Operations Management © 2003 Prentice-Hall, Inc. All rights reserved. Chapter 9 Demand Forecasting.
Time-Series Forecasting Overview Moving Averages Exponential Smoothing Seasonality.
Lesson 4 -Part A Forecasting Quantitative Approaches to Forecasting Components of a Time Series Measures of Forecast Accuracy Smoothing Methods Trend Projection.
Forecasting Operations Management For Competitive Advantage.
Demand Management and Forecasting Module IV. Two Approaches in Demand Management Active approach to influence demand Passive approach to respond to changing.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Operations Fall 2015 Bruce Duggan Providence University College.
1 Chapter 13 Forecasting  Demand Management  Qualitative Forecasting Methods  Simple & Weighted Moving Average Forecasts  Exponential Smoothing  Simple.
Welcome to MM305 Unit 5 Seminar Prof Greg Forecasting.
Learning Objectives Describe what forecasting is Explain time series & its components Smooth a data series –Moving average –Exponential smoothing Forecast.
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
Forecasting Demand. Forecasting Methods Qualitative – Judgmental, Executive Opinion - Internal Opinions - Delphi Method - Surveys Quantitative - Causal,
MGS3100_03.ppt/Feb 11, 2016/Page 1 Georgia State University - Confidential MGS 3100 Business Analysis Time Series Forecasting Feb 11, 2016.
DEPARTMENT OF MECHANICAL ENGINEERING VII-SEMESTER PRODUCTION TECHNOLOGY-II 1 CHAPTER NO.4 FORECASTING.
Time-Series Forecast Models  A time series is a sequence of evenly time-spaced data points, such as daily shipments, weekly sales, or quarterly earnings.
4 - 1 Course Title: Production and Operations Management Course Code: MGT 362 Course Book: Operations Management 10 th Edition. By Jay Heizer & Barry Render.
1 1 Chapter 6 Forecasting n Quantitative Approaches to Forecasting n The Components of a Time Series n Measures of Forecast Accuracy n Using Smoothing.
Forecasting Demand. Problems with Forecasts Forecasts are Usually Wrong. Every Forecast Should Include an Estimate of Error. Forecasts are More Accurate.
1 Decision Making ADMI 6510 Forecasting Models Key Sources: Data Analysis and Decision Making (Albrigth, Winston and Zappe) An Introduction to Management.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 3 Forecasting.
Chapter 15 Forecasting. Forecasting Methods n Forecasting methods can be classified as qualitative or quantitative. n Such methods are appropriate when.
Welcome to MM305 Unit 5 Seminar Dr. Bob Forecasting.
Welcome to MM305 Unit 5 Seminar Forecasting. What is forecasting? An attempt to predict the future using data. Generally an 8-step process 1.Why are you.
Forecasting Methods Dr. T. T. Kachwala.
Mechanical Engineering Haldia Institute of Technology
Demand Management and Forecasting
“The Art of Forecasting”
Texas A&M Industrial Engineering
Forecasting is an Integral Part of Business Planning
Chapter 8 Supplement Forecasting.
Exponential Smoothing
Presentation transcript:

Forecasting Introduction An essential aspect of managing any organization is planning for the future. Organizations employ forecasting techniques to determine future inventory, costs, capacities, and interest rate changes. There are two basic approaches to forecasting: -Qualitative -Quantitative

Time Span of Forecasts Long-range Short-range time spans usually greater than one year necessary to support strategic decisions about planning products, processes, and facilities Short-range time spans ranging from a few days to a few weeks cycles, seasonality, and trend may have little effect random fluctuation is main data pattern

Qualitative Approaches to Forecasting Delphi Approach A panel of experts, each of whom is physically separated from the others and is anonymous, is asked to respond to a sequential series of questionnaires. Scenario Writing Subjective or Interactive Approaches

Quantitative Approaches to Forecasting Quantitative methods are based on an analysis of historical data concerning one or more time series. A time series is a set of observations measured at successive points in time or over successive periods of time. If the historical data used are restricted to past values of the series that we are trying to forecast, the procedure is called a time series method. If the historical data used involve other time series that are believed to be related to the time series that we are trying to forecast, the procedure is called a causal method.

Time series data-Data Patterns Trends accounts for the gradual shifting of the time series over a long period of time. Seasonality of the series accounts for regular patterns of variability within certain time periods, such as over a year. Cycle Any regular pattern of sequences of values above and below the trend line is attributable Random fluctuation series is caused by short-term, unanticipated and non-recurring factors that affect the values of the time series.

Smoothing Methods: Moving Average Moving Average Method The moving average method consists of computing an average of the most recent n data values for the series and using this average for forecasting the value of the time series for the next period. Error in Forecasting Measures the average error that can be expected over time.

Moving Averages

Moving Averages Forecast

Weighted Moving Average This is a variation on the simple moving average where instead of the weights used to compute the average being equal, they are not equal This allows more recent demand data to have a greater effect on the moving average, therefore the forecast The weights must add to 1.0 and generally decrease in value with the age of the data The distribution of the weights determine impulse response of the forecast = w1Yt + w2Yt-1 +w3Yt-2 + …+ wnYt-n+1 Swi = 1

Weighted Moving Average

Weighted Moving Average

Moving Average - Example Following data is available about actual sales for the past 13 years. YR 1 2 3 4 5 6 7 8 9 10 11 12 13 Sales 2.3 2.2 2.25 2.6 4.1 3.8 4.3 4.2 4.8 5.2 Find the “Forecast” for the yr 14 using “Two Years” as well as “three years” moving averages. Which of the two forecasts is more reliable on the basis of Mean Squared Error (MSE) criterion ?

Weighted Moving Average Vacuum cleaner sales for 12 months is given below. The owner of the supermarket decides to forecast sales by weighting the past 3 months as follows Wt Applied Month 3 Last month 2 Two months ago 1 Three months ago Months 1 2 3 4 5 6 7 8 9 10 11 12 Actual sales (units) 13 16 19 23 26 30 28 18 14

Exponential Smoothing The weights used to compute the forecast (moving average) are exponentially distributed The forecast is the sum of the old forecast and a portion of the forecast error Ft = Ft-1 + a(At-1 - Ft-1) The smoothing constant, , must be between 0.0 and 1.0 A large  provides a high impulse response forecast A small  provides a low impulse response forecast New Forecast = a (Actual Demand) + (1-a)(Old Forecast)

Exponential Smoothing Data

Exponential Smoothing (Alpha = .42)

Exponential Smoothing - example Estimate the trend values using the data given by taking a 4 yr moving average. In January a city hotel predicted a February demand for 142 room occupancy. Actual February demand was 153 rooms. Using α= .20 forecast the march demand using exponential smoothing method