Objectives Write equations and graph circles in the coordinate plane.

Slides:



Advertisements
Similar presentations
12-5 Circles in the Coordinate Plane
Advertisements

EQUATIONS OF CIRCLES.
Circles Sheila Roby April 22, What is a circle? A circle is the set of all points in a plane equidistant from a fixed point. Equi means same, so.
Notes Over 10.3 r is the radius radius is 4 units
CIRCLES Unit 3-2. Equations we’ll need: Distance formula Midpoint formula.
[x – (–8)] 2 + (y – 0) 2 = ( 5 ) 2 Substitute (–8, 0) for (h, k) and 5 for r. Write the standard equation of a circle with center (–8, 0) and radius 5.
Geometry Equations of a Circle.
GeometryGeometry Lesson 75 Writing the Equation of Circles.
Equations of Circles 10.6 California State Standards 17: Prove theorems using coordinate geometry.
EXAMPLE 1 Write an equation of a circle Write the equation of the circle shown. The radius is 3 and the center is at the origin. x 2 + y 2 = r 2 x 2 +
10.6 Equations of Circles Advanced Geometry. What do you need to find the equation of a circle? Coordinates of the Center of the circle. Radius – Distance.
9-8 Equations of Circles Objectives: To write and use the equation of a circle in the coordinate plane.
Geometry Honors Section 9.6 Circles in the Coordinate Plane.
GEOMETRY HELP [x – (–8)] 2 + (y – 0) 2 = ( 5 ) 2 Substitute (–8, 0) for (h, k) and 5 for r. Write the standard equation of a circle with center (–8, 0)
EXAMPLE 3 Write the standard equation of a circle The point (–5, 6) is on a circle with center (–1, 3). Write the standard equation of the circle. SOLUTION.
Unit 1 – Conic Sections Section 1.2 – The Circle Calculator Required.
Circles in the Coordinate Plane I can identify and understand equations for circles.
10-6 Equations of Circles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Circles in the Coordinate Plane
Circles in the Coordinate Plane
CirclesCircles 11.5 Equations of Circles Objective: To write an equation of a circle.
Section 2.4 – Circles Circle – a set of points in a plane that are equidistant from a fixed point.
Section 9-3 Circles Objectives I can write equations of circles I can graph circles with certain properties I can Complete the Square to get into Standard.
GeometryGeometry 10.6 Equations of Circles Geometry.
Warm Up Use the Distance Formula to find the distance, to the nearest tenth, between each pair of points. 1. A(6, 2) and D(–3, –2) 2. C(4, 5) and D(0,
Section 6.2 – The Circle. Write the standard form of each equation. Then graph the equation. center (0, 3) and radius 2 h = 0, k = 3, r = 2.
Algebra II Honors Problem of the Day Homework: p odds Without graphing find all symmetries for each equation.
Equations of Circles. Vocab Review: Circle The set of all points a fixed distance r from a point (h, k), where r is the radius of the circle and the point.
Circles in the Coordinate Plane
9.6 Circles in the Coordinate Plane Date: ____________.
8.1 The Rectangular Coordinate System and Circles Part 2: Circles.
GeometryGeometry Equations of Circles. GeometryGeometry Finding Equations of Circles You can write an equation of a circle in a coordinate plane if you.
Equations of Circles. You can write an equation of a circle in a coordinate plane, if you know: Its radius The coordinates of its center.
Holt Geometry 11-7 Circles in the Coordinate Plane 11-7 Circles in the Coordinate Plane Holt Geometry.
Equation of a Circle. Equation Where the center of the circle is (h, k) and r is the radius.
EXAMPLE 1 Write an equation of a circle Write the equation of the circle shown. SOLUTION The radius is 3 and the center is at the origin. x 2 + y 2 = r.
Graphing Circles and Writing Equations of Circles.
Holt McDougal Geometry 12-7 Circles in the Coordinate Plane 12-7 Circles in the Coordinate Plane Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
Holt Geometry 11-7 Circles in the Coordinate Plane 11-7 Circles in the Coordinate Plane Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
Then/Now You wrote equations of lines using information about their graphs. Write the equation of a circle. Graph a circle on the coordinate plane.
  Where the center of the circle is (h, k) and r is the radius. Equation.
Warm Up Find the slope of the line that connects each pair of points. – (5, 7) and (–1, 6) 2. (3, –4) and (–4, 3)
10-8 Equations of Circles 1.Write the equation of a circle. 2.Graph a circle on the coordinate plane.
Circles March 18th A ___________ is the set of all point that are a fixed distance, called the _________ from a fixed point, called the _________.
Warm Up Use the Distance Formula to find the distance, to the nearest tenth, between each pair of points. 1. A(6, 2) and D(–3, –2) 2. C(4, 5) and D(0,
Circles in the Coordinate Plane
Circles in the Coordinate Plane
Circles in the Coordinate Plane
Lesson: 10 – 8 Equations of Circles
Circles 4.1 (Chapter 10). Circles 4.1 (Chapter 10)
Warm Up Use the Distance Formula to find the distance, to the nearest tenth, between each pair of points. 1. A(6, 2) and D(–3, –2) 2. C(4, 5) and D(0,
11.7 Circles in the Coordinate Plane
9.3 Graph and Write Equations of Circles
10-7: Write and Graph Equations of Circles
Circle equation.
LT 11.8: Write equations and graph circles in the coordinate plane.
Objectives Write equations and graph circles in the coordinate plane.
Warm Up Use the Distance Formula to find the distance, to the nearest tenth, between each pair of points. 1. A(6, 2) and D(–3, –2) 2. C(4, 5) and D(0,
Objectives Write equations and graph circles in the coordinate plane.
The equation of a circle is based on the Distance Formula and the fact that all points on a circle are equidistant from the center.
Circles in the Coordinate Plane
Circles in the Coordinate Plane
Circles in the Coordinate Plane
Circles in the Coordinate Plane
Circles in the Coordinate Plane
Circles in the Coordinate Plane
Circles in the Coordinate Plane
Warmup Find the distance between the point (x, y) and the point (h, k).
10.7 Write and Graph Equations of ⊙s
Presentation transcript:

Objectives Write equations and graph circles in the coordinate plane.

The equation of a circle is based on the Distance Formula and the fact that all points on a circle are equidistant from the center.

Example 1A: Writing the Equation of a Circle Write the equation of each circle. J with center J (2, 2) and radius 4 (x – h)2 + (y – k)2 = r2 Equation of a circle Substitute 2 for h, 2 for k, and 4 for r. (x – 2)2 + (y – 2)2 = 42 (x – 2)2 + (y – 2)2 = 16 Simplify.

Example 1B: Writing the Equation of a Circle Write the equation of each circle. K that passes through J(6, 4) and has center K(1, –8) Distance formula. Simplify. Substitute 1 for h, –8 for k, and 13 for r. (x – 1)2 + (y – (–8))2 = 132 (x – 1)2 + (y + 8)2 = 169 Simplify.

Example 1C: Writing the Equation of a Circle Write the equation of each circle. P with center P(0, –3) and radius 8 (x – h)2 + (y – k)2 = r2 Equation of a circle Substitute 0 for h, –3 for k, and 8 for r. (x – 0)2 + (y – (–3))2 = 82 x2 + (y + 3)2 = 64 Simplify.

If you are given the equation of a circle, you can graph the circle by identifying its center and radius.

Example 2A: Graphing a Circle Graph x2 + y2 = 16. Step 1: Find the radius. Since the radius is , or 4, use ±4. Step 2: Find the center (h, k) The center is (0, 0).

Example 2B: Graphing a Circle Graph (x – 3)2 + (y + 4)2 = 9. Step 1: Find the radius. = 3 Step 2: Find the center (h, k) The equation of the given circle can be written as (x – 3)2 + (y – (– 4))2 = 32. So h = 3, k = –4, and r = 3. The center is (3, –4).