Warm Up Find the zeros of the following function F(x) = x2 -1

Slides:



Advertisements
Similar presentations
Session 10 Agenda: Questions from ? 5.4 – Polynomial Functions
Advertisements

Horizontal Vertical Slant and Holes
Chapter 6 Rational Expressions, Functions, and Equations
Rational function A function  of the form where p(x) and q(x) are polynomials, with q(x) ≠ 0, is called a rational function.
3.4 Rational Functions and Their Graphs
3.6: Rational Functions and Their Graphs
Rational Functions Sec. 2.7a. Definition: Rational Functions Let f and g be polynomial functions with g (x ) = 0. Then the function given by is a rational.
Chapter 6 Rational Expressions, Functions, and Equations.
LIAL HORNSBY SCHNEIDER
Rational Functions and Their Graphs. Example Find the Domain of this Function. Solution: The domain of this function is the set of all real numbers not.
4.4 Rational Functions Objectives:
1 Find the domains of rational functions. Find the vertical and horizontal asymptotes of graphs of rational functions. 2.6 What You Should Learn.
Polynomial and Rational Functions
The exponential function f with base a is defined by f(x) = ax
2.6 & 2.7 Rational Functions and Their Graphs 2.6 & 2.7 Rational Functions and Their Graphs Objectives: Identify and evaluate rational functions Graph.
5.1 Polynomial Functions Degree of a Polynomial: Largest Power of X that appears. The zero polynomial function f(x) = 0 is not assigned a degree.
Rational Functions and Their Graphs
Copyright © 2014, 2010 Pearson Education, Inc. Chapter 2 Polynomials and Rational Functions Copyright © 2014, 2010 Pearson Education, Inc.
Rational Functions - Rational functions are quotients of polynomial functions: where P(x) and Q(x) are polynomial functions and Q(x)  0. -The domain of.
Section 2.6 Rational Functions Part 1
2.6 Rational Functions and Asymptotes 2.7 Graphs of Rational Functions Rational function – a fraction where the numerator and denominator are polynomials.
Rational Functions and Their Graphs
Lesson 3.5 – Finding the domain of a Rational Function To find the domain set the denominator to zero and solve for x. The domain will be all real number.
Rational Functions and Their Graphs. Example Find the Domain of this Function. Solution: The domain of this function is the set of all real numbers not.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Alg 2 Warm Up – Wed (5/15)-Thurs (5/16) 1.List the possible roots. Then find all the zeros of the polynomial function. f(x) = x 4 – 2x 2 – 16x -15 Answers:
Copyright © Cengage Learning. All rights reserved. Polynomial And Rational Functions.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Rational Functions Rational functions are quotients of polynomial functions. This means that rational functions can be expressed as where p(x) and q(x)
Essential Question: How do you find intercepts, vertical asymptotes, horizontal asymptotes and holes? Students will write a summary describing the different.
Copyright © Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions.
Date: 1.2 Functions And Their Properties A relation is any set of ordered pairs. The set of all first components of the ordered pairs is called the domain.
2.6. A rational function is of the form f(x) = where N(x) and D(x) are polynomials and D(x) is NOT the zero polynomial. The domain of the rational function.
Chapter 2 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Mrs.Volynskaya Ch.2.6 Rational Functions and Their Graphs.
Rational Functions and Asymptotes Section 2.6. Objectives Find the domain of rational functions. Find horizontal and vertical asymptotes of graphs of.
Copyright © 2010 Pearson Education, Inc. All rights reserved Sec
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Graph Sketching: Asymptotes and Rational Functions OBJECTIVES  Find limits.
Chapter 2 – Polynomial and Rational Functions 2.6/7 – Graphs of Rational Functions and Asymptotes.
College Algebra Chapter 3 Polynomial and Rational Functions Section 3.5 Rational Functions.
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1 Section 6.1 Rational Expressions and Functions: Multiplying and Dividing Copyright © 2013, 2009,
 Find the horizontal and vertical asymptotes of the following rational functions 1. (2x) / (3x 2 +1) 2. (2x 2 ) / (x 2 – 1) Note: Vertical asymptotes-
Graph Sketching: Asymptotes and Rational Functions
3.6 Rational Functions.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
College Algebra Chapter 3 Polynomial and Rational Functions
Polynomial and Rational Functions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Rational Functions and Their Graphs
GRAPHING RATIONAL FUNCTIONS
8.2 Rational Functions and Their Graphs
Lesson 2.7 Graphs of Rational Functions
Copyright © Cengage Learning. All rights reserved.
Polynomial and Rational Functions
Section 8.8 Review of Rational Expressions and Rational Equations; Rational Functions.
3.3: Rational Functions and Their Graphs
Rational Functions A rational function is a function of the form where P and Q are polynomials. We assume that P(x) and Q(x) have no factor in common.
3.3: Rational Functions and Their Graphs
A. 4 positive zeros; 1 negative zero
Factor completely and simplify. State the domain.
Splash Screen.
Chapter 4: Rational, Power, and Root Functions
2.6 Section 2.6.
Chapter 4: Rational, Power, and Root Functions
Splash Screen.
Properties of Rational Functions
Chapter 6 Rational Expressions, Functions, and Equations
Presentation transcript:

Warm Up Find the zeros of the following function F(x) = x2 -1 Factor the following function X2 + x – 2 Simplify the expression: x2 – x – 6

Math IV Lesson12 Rational functions and asymptotes 2.6 Essential Question: How do you find the domain and asymptotes of rational functions? Standard: MM4A4. Students will investigate functions. a. Compare and contrast properties of functions within and across the following types: linear, quadratic, polynomial, power, rational, exponential, logarithmic, trigonometric, and piecewise.

Rational Functions and Their Graphs Rational functions are quotients of polynomial functions. This means that rational functions can be expressed as where p(x) and q(x) are polynomial functions and q(x)  0. The domain of a rational function is the set of all real numbers except the x-values that make the denominator zero. For example, the domain of the rational function is the set of all real numbers except 0, 2, and -5. This is p(x). This is q(x).

EXAMPLE: Finding the Domain of a Rational Function Rational Functions and Their Graphs EXAMPLE: Finding the Domain of a Rational Function Find the domain of each rational function. a. Solution Rational functions contain division. Because division by 0 is undefined, we must exclude from the domain of each function values of x that cause the polynomial function in the denominator to be 0. a. The denominator of is 0 if x = 3. Thus, x cannot equal 3. The domain of f consists of all real numbers except 3, written {x | x  3}. more

EXAMPLE: Finding the Domain of a Rational Function Rational Functions and Their Graphs EXAMPLE: Finding the Domain of a Rational Function Find the domain of each rational function. a. Solution Rational functions contain division. Because division by 0 is undefined, we must exclude from the domain of each function values of x that cause the polynomial function in the denominator to be 0. b. The denominator of is 0 if x = -3 or x = 3. Thus, the domain of g consists of all real numbers except -3 and 3, written {x | x  - {x | x  -3, x  3}. more

EXAMPLE: Finding the Domain of a Rational Function 3.6: Rational Functions and Their Graphs EXAMPLE: Finding the Domain of a Rational Function Find the domain of each rational function. a. Solution Rational functions contain division. Because division by 0 is undefined, we must exclude from the domain of each function values of x that cause the polynomial function in the denominator to be 0. c. No real numbers cause the denominator of to equal zero. The domain of h consists of all real numbers.

Rational Functions Arrow Notation 3.6: Rational Functions and Their Graphs Rational Functions Unlike the graph of a polynomial function, the graph of the reciprocal function has a break in it and is composed of two distinct branches. We use a special arrow notation to describe this situation symbolically: Arrow Notation Symbol Meaning x  a + x approaches a from the right. x  a - x approaches a from the left. x   x approaches infinity; that is, x increases without bound. x  -  x approaches negative infinity; that is, x decreases without bound.

Vertical Asymptotes of Rational Functions 3.6: Rational Functions and Their Graphs Vertical Asymptotes of Rational Functions Definition of a Vertical Asymptote The line x = a is a vertical asymptote of the graph of a function f if f (x) increases or decreases without bound as x approaches a. f (x)   as x  a + f (x)   as x  a - f a y x x = a f a y x x = a Thus, f (x)   or f(x)  -  as x approaches a from either the left or the right. more

Vertical Asymptotes of Rational Functions 3.6: Rational Functions and Their Graphs Vertical Asymptotes of Rational Functions Definition of a Vertical Asymptote The line x = a is a vertical asymptote of the graph of a function f if f (x) increases or decreases without bound as x approaches a. f (x)  -  as x  a + f (x)  -  as x  a - f a y x x = a x = a f a y x Thus, f (x)   or f(x)  -  as x approaches a from either the left or the right.

Vertical Asymptotes of Rational Functions 3.6: Rational Functions and Their Graphs Vertical Asymptotes of Rational Functions If the graph of a rational function has vertical asymptotes, they can be located by using the following theorem. Locating Vertical Asymptotes If is a rational function in which p(x) and q(x) have no common factors and a is a zero of q(x), the denominator, then x = a is a vertical asymptote of the graph of f.

Horizontal Asymptotes of Rational Functions 3.6: Rational Functions and Their Graphs Horizontal Asymptotes of Rational Functions A rational function may have several vertical asymptotes, but it can have at most one horizontal asymptote. Definition of a Horizontal Asymptote The line y = b is a horizontal asymptote of the graph of a function f if f (x) approaches b as x increases or decreases without bound. f y x y = b x y f y = b f y x y = b f (x)  b as x   f (x)  b as x   f (x)  b as x  

Horizontal Asymptotes of Rational Functions 3.6: Rational Functions and Their Graphs Horizontal Asymptotes of Rational Functions If the graph of a rational function has a horizontal asymptote, it can be located by using the following theorem. Locating Horizontal Asymptotes Let f be the rational function given by The degree of the numerator is n. The degree of the denominator is m. If n < m, the x-axis is the horizontal asymptote of the graph of f. If n = m, the line y = is the horizontal asymptote of the graph of f. If n > m, the graph of f has no horizontal asymptote.

f (-x) = f (x): y-axis symmetry f (-x) = -f (x): origin symmetry 3.6: Rational Functions and Their Graphs Strategy for Graphing a Rational Function Suppose that where p(x) and q(x) are polynomial functions with no common factors. 1. Determine whether the graph of f has symmetry. f (-x) = f (x): y-axis symmetry f (-x) = -f (x): origin symmetry 2. Find the y-intercept (if there is one) by evaluating f (0). 3. Find the x-intercepts (if there are any) by solving the equation p(x) = 0. 4. Find any vertical asymptote(s) by solving the equation q (x) = 0. 5. Find the horizontal asymptote (if there is one) using the rule for determining the horizontal asymptote of a rational function. 6. Plot at least one point between and beyond each x-intercept and vertical asymptote. 7. Use the information obtained previously to graph the function between and beyond the vertical asymptotes.

EXAMPLE: Graphing a Rational Function 3.6: Rational Functions and Their Graphs EXAMPLE: Graphing a Rational Function Solution Step 1 Determine symmetry: f (-x) = = = f (x): Symmetric with respect to the y-axis. Step 2 Find the y-intercept: f (0) = = 0: y-intercept is 0. Step 3 Find the x-intercept: 3x2 = 0, so x = 0: x-intercept is 0. Step 4 Find the vertical asymptotes: Set q(x) = 0. x2 - 4 = 0 Set the denominator equal to zero. x2 = 4 x = 2 Vertical asymptotes: x = -2 and x = 2. more

EXAMPLE: Graphing a Rational Function 3.6: Rational Functions and Their Graphs EXAMPLE: Graphing a Rational Function Solution Step 5 Find the horizontal asymptote: y = 3/1 = 3. Step 6 Plot points between and beyond the x-intercept and the vertical asymptotes. With an x-intercept at 0 and vertical asymptotes at x = 2 and x = -2, we evaluate the function at -3, -1, 1, 3, and 4. -5 -4 -3 -2 -1 1 2 3 4 5 7 6 Vertical asymptote: x = 2 Vertical asymptote: x = -2 Horizontal asymptote: y = 3 x-intercept and y-intercept x -3 -1 1 3 4 f(x) = The figure shows these points, the y-intercept, the x-intercept, and the asymptotes. more

EXAMPLE: Graphing a Rational Function 3.6: Rational Functions and Their Graphs EXAMPLE: Graphing a Rational Function Solution Step 7 Graph the function. The graph of f (x) = 2x is shown in the figure. The y-axis symmetry is now obvious. -5 -4 -3 -2 -1 1 2 3 4 5 7 6 Vertical asymptote: x = 2 Vertical asymptote: x = -2 Horizontal asymptote: y = 3 x-intercept and y-intercept -5 -4 -3 -2 -1 1 2 3 4 5 7 6 x = -2 y = 3 x = 2

EXAMPLE: Finding the Slant Asymptote of a Rational Function 3.6: Rational Functions and Their Graphs EXAMPLE: Finding the Slant Asymptote of a Rational Function Find the slant asymptotes of f (x) = Solution Because the degree of the numerator, 2, is exactly one more than the degree of the denominator, 1, the graph of f has a slant asymptote. To find the equation of the slant asymptote, divide x - 3 into x2 - 4x - 5: 1 -4 -5 3 -3 1 -1 -8 3 Remainder more

EXAMPLE: Finding the Slant Asymptote of a Rational Function 3.6: Rational Functions and Their Graphs EXAMPLE: Finding the Slant Asymptote of a Rational Function Find the slant asymptotes of f (x) = Solution The equation of the slant asymptote is y = x - 1. Using our strategy for graphing rational functions, the graph of f (x) = is shown. -2 -1 4 5 6 7 8 3 2 1 -3 Vertical asymptote: x = 3 Slant asymptote: y = x - 1