Dusanka Zupanski CIRA/Colorado State University Fort Collins, Colorado Ensemble Data Assimilation and Prediction: Applications to Environmental Science.

Slides:



Advertisements
Similar presentations
The Future of Data Assimilation: 4D-Var or Ensemble Kalman Filter?
Advertisements

Ensemble data assimilation (EnsDA) activities of the GOES-R project Progress report Dusanka Zupanski CIRA/CSU GOES-R meeting 8 September 2004 Dusanka Zupanski,
P2.1 ENSEMBLE DATA ASSIMILATION: EXPERIMENTS USING NASA’S GEOS COLUMN PRECIPITATION MODEL D. Zupanski 1, A. Y. Hou 2, S. Zhang 2, M. Zupanski 1, C. D.
Dusanka Zupanski CIRA/Colorado State University Fort Collins, Colorado Model Error and Parameter Estimation Joint NCAR/MMM CSU/CIRA Data Assimilation Workshop.
Critical issues of ensemble data assimilation in application to GOES-R risk reduction program D. Zupanski 1, M. Zupanski 1, M. DeMaria 2, and L. Grasso.
1B.17 ASSESSING THE IMPACT OF OBSERVATIONS AND MODEL ERRORS IN THE ENSEMBLE DATA ASSIMILATION FRAMEWORK D. Zupanski 1, A. Y. Hou 2, S. Zhang 2, M. Zupanski.
Dusanka Zupanski CIRA/Colorado State University Fort Collins, Colorado A General Ensemble-Based Approach to Data Assimilation Model Error and Parameter.
Dusanka Zupanski CIRA/Colorado State University Fort Collins, Colorado Ensemble Kalman Filter Guest Lecture at AT 753: Atmospheric Water Cycle 21 April.
P1.8 QUANTIFYING AND REDUCING UNCERTAINTY BY EMPLOYING MODEL ERROR ESTIMATION METHODS Dusanka Zupanski Cooperative Institute for Research in the Atmosphere.
Model error estimation employing ensemble data assimilation Dusanka Zupanski and Milija Zupanski CIRA/Colorado State University, Fort Collins, CO, U.S.A.
MODEL ERROR ESTIMATION Cooperative Institute for Research in the Atmosphere Research Benefits to NOAA:This is a novel research approach, providing an optimal.
Introduction to data assimilation in meteorology Pierre Brousseau, Ludovic Auger ATMO 08,Alghero, september 2008.
Multi-sensor and multi-scale data assimilation of remotely sensed snow observations Konstantinos Andreadis 1, Dennis Lettenmaier 1, and Dennis McLaughlin.
Initialization Issues of Coupled Ocean-atmosphere Prediction System Climate and Environment System Research Center Seoul National University, Korea In-Sik.
Effects of model error on ensemble forecast using the EnKF Hiroshi Koyama 1 and Masahiro Watanabe 2 1 : Center for Climate System Research, University.
Targetting and Assimilation: a dynamically consistent approach Anna Trevisan, Alberto Carrassi and Francesco Uboldi ISAC-CNR Bologna, Italy, Dept. of Physics.
Ibrahim Hoteit KAUST, CSIM, May 2010 Should we be using Data Assimilation to Combine Seismic Imaging and Reservoir Modeling? Earth Sciences and Engineering.
A Concept of Environmental Forecasting and Variational Organization of Modeling Technology Vladimir Penenko Institute of Computational Mathematics and.
Carbon Flux Bias Estimation at Regional Scale using Coupled MLEF-PCTM model Ravindra Lokupitiya Department of Atmospheric Science Colorado State University.
Advanced data assimilation methods- EKF and EnKF Hong Li and Eugenia Kalnay University of Maryland July 2006.
Ensemble Kalman Filter Methods
Maximum Liklihood Ensemble Filter (MLEF) Dusanka Zupanski, Kevin Robert Gurney, Scott Denning, Milia Zupanski, Ravi Lokupitiya June, 2005 TransCom Meeting,
A comparison of hybrid ensemble transform Kalman filter(ETKF)-3DVAR and ensemble square root filter (EnSRF) analysis schemes Xuguang Wang NOAA/ESRL/PSD,
EnKF Overview and Theory
Observing Strategy and Observation Targeting for Tropical Cyclones Using Ensemble-Based Sensitivity Analysis and Data Assimilation Chen, Deng-Shun 3 Dec,
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Statistical Characteristics of High- Resolution COSMO.
Ensemble Methods Daryl Kleist 1 JCSDA Summer Colloquium on Data Assimilation Fort Collins, CO 27 July – 7 August 2015 Univ. of Maryland-College Park, Dept.
Computational Issues: An EnKF Perspective Jeff Whitaker NOAA Earth System Research Lab ENIAC 1948“Roadrunner” 2008.
1 ESTIMATING THE STATE OF LARGE SPATIOTEMPORALLY CHAOTIC SYSTEMS: WEATHER FORECASTING, ETC. Edward Ott University of Maryland Main Reference: E. OTT, B.
CSDA Conference, Limassol, 2005 University of Medicine and Pharmacy “Gr. T. Popa” Iasi Department of Mathematics and Informatics Gabriel Dimitriu University.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss High-resolution data assimilation in COSMO: Status and.
MPO 674 Lecture 20 3/26/15. 3d-Var vs 4d-Var.
Assimilation of HF Radar Data into Coastal Wave Models NERC-funded PhD work also supervised by Clive W Anderson (University of Sheffield) Judith Wolf (Proudman.
Hybrid Variational/Ensemble Data Assimilation
Dusanka Zupanski And Scott Denning Colorado State University Fort Collins, CO CMDL Workshop on Modeling and Data Analysis of Atmospheric CO.
1 GSI/ETKF Regional Hybrid Data Assimilation with MMM Hybrid Testbed Arthur P. Mizzi NCAR/MMM 2011 GSI Workshop June 29 – July 1, 2011.
DoD Center for Geosciences/Atmospheric Research at Colorado State University WSMR November 19-20, 2003 ARMY Research Lab and CIRA/CSU Collaboration on.
2004 SIAM Annual Meeting Minisymposium on Data Assimilation and Predictability for Atmospheric and Oceanographic Modeling July 15, 2004, Portland, Oregon.
Applications of optimal control and EnKF to Flow Simulation and Modeling Florida State University, February, 2005, Tallahassee, Florida The Maximum.
Assimilating chemical compound with a regional chemical model Chu-Chun Chang 1, Shu-Chih Yang 1, Mao-Chang Liang 2, ShuWei Hsu 1, Yu-Heng Tseng 3 and Ji-Sung.
MODEL ERROR ESTIMATION EMPLOYING DATA ASSIMILATION METHODOLOGIES Dusanka Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University.
Sensitivity Analysis of Mesoscale Forecasts from Large Ensembles of Randomly and Non-Randomly Perturbed Model Runs William Martin November 10, 2005.
MODEL ERROR ESTIMATION IN ENSEMBLE DATA ASSIMILATION FRAMEWORK Dusanka Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University.
A Sequential Hybrid 4DVAR System Implemented Using a Multi-Grid Technique Yuanfu Xie 1, Steven E. Koch 1, and Steve Albers 1,2 1 NOAA Earth System Research.
# # # # An Application of Maximum Likelihood Ensemble Filter (MLEF) to Carbon Problems Ravindra Lokupitiya 1, Scott Denning 1, Dusanka Zupanski 2, Kevin.
Data assimilation and forecasting the weather (!) Eugenia Kalnay and many friends University of Maryland.
DATA ASSIMILATION AND MODEL ERROR ESTIMATION Dusanka Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University Fort Collins,
Ensemble data assimilation in an operational context: the experience at the Italian Weather Service Massimo Bonavita and Lucio Torrisi CNMCA-UGM, Rome.
MPO 674 Lecture 28 4/23/15. The course on one slide 1. Intro: numerical models, ensembles, the science of prediction 2. Lorenz 1963,
Ensemble Kalman Filter in a boundary layer 1D numerical model Samuel Rémy and Thierry Bergot (Météo-France) Workshop on ensemble methods in meteorology.
Local Predictability of the Performance of an Ensemble Forecast System Liz Satterfield and Istvan Szunyogh Texas A&M University, College Station, TX Third.
Prepared by Dusanka Zupanski and …… Maximum Likelihood Ensemble Filter: application to carbon problems.
Hydrologic Data Assimilation with a Representer-Based Variational Algorithm Dennis McLaughlin, Parsons Lab., Civil & Environmental Engineering, MIT Dara.
, Karina Apodaca, and Man Zhang Warn-on-Forecast and High-Impact Weather Workshop, February 6-7, 2013, National Weather Center, Norman, OK Utility of GOES-R.
A Random Subgrouping Scheme for Ensemble Kalman Filters Yun Liu Dept. of Atmospheric and Oceanic Science, University of Maryland Atmospheric and oceanic.
Hybrid (3D-VAR /ETKF) Data Assimilation System
Ensemble forecasting/data assimilation and model error estimation algorithm Prepared by Dusanka Zupanski and Milija Zupanski CIRA/CSU Denning group meeting.
The application of ensemble Kalman filter in adaptive observation and information content estimation studies Junjie Liu and Eugenia Kalnay July 13th, 2007.
École Doctorale des Sciences de l'Environnement d’Île-de-France Année Universitaire Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
École Doctorale des Sciences de l'Environnement d’ Î le-de-France Année Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
The Ensemble Kalman filter
Assimilation of GPM satellite radiance in improving hurricane forecasting Zhaoxia Pu and ChauLam (Chris) Yu Department of Atmospheric Sciences University.
LOGNORMAL DATA ASSIMILATION: THEORY AND APPLICATIONS
Data Assimilation Theory CTCD Data Assimilation Workshop Nov 2005
Information content in ensemble data assimilation
background error covariance matrices Rescaled EnKF Optimization
New Approaches to Data Assimilation
2. University of Northern British Columbia, Prince George, Canada
Hartmut Bösch and Sarah Dance
Sarah Dance DARC/University of Reading
Presentation transcript:

Dusanka Zupanski CIRA/Colorado State University Fort Collins, Colorado Ensemble Data Assimilation and Prediction: Applications to Environmental Science Presentation at EWHA Department of Environmental Science and Engineering May 26, 2005 Dusanka Zupanski, CIRA/CSU Collaborators - M. Zupanski, L. Grasso, Scott Denning Group (Colorado State University) - A. Y. Hou, S. Zhang (NASA/GMAO) - M. DeMaria (NOAA/NESDIS) - Seon Ki Park (EWHA Womans University) Research supported by NOAA Grant NA17RJ1228, NASA Grants , NAG and NNG04GI25G, and DoD Grant DAAD

 Introduction to ensemble data assimilation methods  Maximum Likelihood Ensemble Filter (MLEF)  State augmentation approach for model error and parameter estimation  MLEF applications  Conclusions and future work Dusanka Zupanski, CIRA/CSU OUTLINE

Introduction: What is Ensemble Data Assimilation? Forecast error Covariance P f (ensemble subspace) DATA ASSIMILATION Observations First guess Optimal solution for model state x=(T,u,v,q, T e,u e,v e,q e, , ,  ) ENSEMBLE FORECASTING Analysis error Covariance P a (ensemble subspace) Dusanka Zupanski, CIRA/CSU

- Control vector in ensemble space of dim Nens - Model state vector of dim Nstate >>Nens Dusanka Zupanski, CIRA/CSU - C is information matrix of dim Nens  Nens - Dynamical forecast model - Observation operator - z i are columns of Z - p i f and p i a are columns of P f and P a - Observations vector of dim Nobs Maximum Likelihood Ensemble Filter (MLEF) (Zupanski 2005; Zupanski and Zupanski 2005) - Change of variable (preconditioning)

VARIATIONAL MLEF Milija Zupanski, CIRA/CSU Ideal Hessian Preconditioning

MODE vs. MEAN Dusanka Zupanski, CIRA/CSU MLEF involves an iterative minimization of functional J  x mode Minimum variance methods (EnKF) calculate ensemble mean  x mean x mode x mean x PDF(x) Non-Gaussian x mode = x mean x PDF(x) Gaussian Different results expected for non-Gaussian PDFs

Wide Range of Applications Data assimilation Ensemble forecasting Parameter estimation Model error estimation Targeted observations Information content of observations Advanced parallel computing Predictability, nonlinear dynamics Any phenomenon with predictive model and observations: Weather, Climate, Ocean, Ecology, Biology, Geology, Chemistry, Cosmology, …

DATA ASSIMILATION application: TRUTHNO ASSIMILATION Locations of min and max centers are much improved in the experiment with assimilation. ASSIMILATION CSU-RAMS non-hydrostatic model: Total humidity mixing ratio (level=200m, Nens=50, Nstate=54000 ) Dusanka Zupanski, CIRA/CSU

Dusanka Zupanski, CIRA/CSU - Forecast model for standard (non-augmented) model state x MODEL ERROR AND PARAMETER ESTIMASTION Using state augmentation approach (Zupanski and Zupanski 2005) - Forecast model for model error (bias) b - Forecast model for empirical parameters  Define augmented state vector w =( x, b,  ) and use augmented forecast model F to update w from time step n-1 to n as Minimize the following cost function J

PARAMETER ESTIMATION, KdVB model (Korteweg-de Vries-Burgers model) True parameter recovered. Improved innovation statistics.

NEGLECT BIASBIAS ESTIMATION (vector size=101) BIAS ESTIMATION (vector size=10)NON-BIASED MODEL BIAS ESTIMATION, KdVB model It is beneficial to reduce degrees of freedom of the model error.

BIAS ESTIMATION, KdVB model Augmented analysis error covariance matrix is updated in each data assimilation cycle. It includes cross-covariance between the initial conditions (IC) error and model error (ME). Dusanka Zupanski, CIRA/CSU

Impact of Lognormal observation errors: Analysis RMS errors, CSU-SWM Stddev(  )=1.e-3 Stddev(  )=1.e-2 Gaussian framework works only for small observation errors Lognormal framework works for all error magnitudes Milija Zupanski, CIRA/CSU

Impact of Lognormal height observation errors: Innovation histogram Gaussian frameworkLognormal framework Stddev(  )=1.e-3 Stddev(  )=1.e-2 Height innovations Generalized non-Gaussian framework can handle Gaussian, Lognormal, or mixed PDF errors !

INFORMATION CONTENT ANALYSIS GEOS-5 column model Degrees of freedom (DOF) for signal Shannon information content, or entropy reduction (used for quantifying predictability) Information matrix New observed information Inadequate P f at the beginning of data assimilation

Ongoing work  Ensemble data assimilation and control theory (NSF) Apply MLEF with CSU global shallow-water model, constructed on a twisted icosahedral grid Non-Gaussian framework Non-derivative minimization methods  Precipitation assimilation and moist processes (NASA) Apply MLEF with NASA GEOS-5 column precipitation model Model errors Empirical parameter estimation  GOES-R Risk Reduction (NOAA/NESDIS) Evaluate the impact of GOES-R measurements in applications to severe weather and tropical cyclones Information content of GOES-R measurements

Ongoing work (continued)  NCEP Global Forecasting System model and real data (NOAA/THORPEX) Apply MLEF with GFS and compare with other EnKF algorithms Compare (and combine) the conditional mean and mode PDF estimates Develop and test double-resolution MLEF  Carbon Cycle data assimilation (NASA) Apply MLEF with fully coupled SiB-CASA-RAMS atmospheric-carbon- biomass model Assimilate carbon concentration globally and locally Empirical parameter estimation in carbon models  Microscale ensemble data assimilation (CGAR-DoD) Apply MLEF with Univ. Purdue non-hydrostatic model Assimilation of real data Collaboration with the Army Research Laboratory

Future Research Directions Development of a fully non-Gaussian algorithm Allow for non-Gaussian state variable components Generalized algorithm with a list of PDFs Model bias and parameter estimation Improve prediction models by learning about its errors and uncertainties Develop as a probabilistic tool for new model development Information content analysis Value added of new observations (e.g., GPM, CloudSat, GOES-R, OCO) Cross-over the existing scientific boundaries Apply probabilistic assimilation/prediction to different science disciplines (e.g., atmospheric, oceanic, ecological, hydrological sciences) General, adaptive, algorithmically simple algorithm opens new possibilities

Anderson, J. L. 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, Bishop, B., Etherton, J. and Majmudar, S. J. 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, Cohn, S.E., 1997: An introduction to estimation theory. J. Meteor. Soc. Japan, 75, Evensen, G. 2003: The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynamics, 53, Fletcher, S. J., and M. Zupanski, 2005: A framework for data assimilation which allows for non-Gaussian errors. Submitted to Proc. Royal Soc. of London A. [ftp://ftp.cira.colostate.edu/milija/papers/Steven_nongauss.pdf] Hamill, T.M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128, Houtekamer, P.L., H.L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an Ensemble Kalman Filter: Results with real observations. Mon. Wea. Rev., 133, Jazwinski, A.H., 1970: Stochastic processes and filtering theory. Academic Press, New York, 376 pp. Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza, M., Kalnay, E., Patil, D. J. and Yorke, J. A. 2004: A Local Ensemble Kalman Filter for Atmospheric Data Assimilation. Tellus, 56A, No. 4, Reichle, R. H., McLaughlin, D. B. and Entekhabi, D. 2002a: Hydrologic data assimilation with the Ensemble Kalman Filter. Mon. Wea. Rev., 130, Snyder, C., and Zhang, F. 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, Tippett, M., J.L. Anderson, C.H. Bishop, T.M. Hamill, and J.S. Whitaker, 2003: Ensemble square-root filters. Mon. Wea. Rev., 131, Whitaker, J. S., and Hamill, T. M. 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, Zupanski, M. 2005: Maximum Likelihood Ensemble Filter: Theoretical Aspects. Mon.Wea.Rev., in print. [ftp://ftp.cira.colostate.edu/milija/papers/MLEF_MWR.pdf] Zupanski, D. and M. Zupanski, 2005: Model error estimation employing ensemble data assimilation approach. Submitted to Mon. Wea. Rev. [ftp://ftp.cira.colostate.edu/Zupanski/manuscriptss/MLEF_model_err.Feb2005.pdf] Literature Review paper General Review paper

Summary of basic characteristics of the MLEF  Developed using ideas from -Variational data assimilation (3DVAR, 4DVAR) -Iterated Kalman Filters -Ensemble Transform Kalman Filter (ETKF, Bishop et al. 2001)  Calculates optimal estimates of: - model state variables (e.g., air temperature, soil moisture, tracer fluxes) - empirical parameters (e.g., diffusion coefficient, drought stress) - model error (bias) - boundary conditions error (lateral, top, bottom boundaries)  Calculates uncertainty of all estimates (in terms of P a and P f )  Calculates information measures (e.g., degrees of freedom for signal, entropy reduction) Dusanka Zupanski, CIRA/CSU  Fully non-linear approach. Adjoint models are not needed.  Non-derivative minimization (finite difference is used instead of first derivative).  It can use Gaussan and non-Gaussian errors

DATA ASSIMILATION application: CSU-RAMS atmospheric non-hydrostatic model Dusanka Zupanski, CIRA/CSU  Hurricane Lili case  35 1-h DA cycles: 13UTC 1 Oct 2002 – 00 UTC 3 Oct  30x20x21 grid points, 15 km grid distance (in the Gulf of Mexico)  Control variable: u,v,w,theta,Exner, r_total (dim=54000)  Model simulated observations with random noise (7200 obs per DA cycle)  Nens=50  Iterative minimization of J (1 iteration only) RMS errors of the analysis (control experiment without assimilation) Hurricane entered the model domain. Impact of assimilation more pronounced.