Chapter 12 Lesson Goal After completing this lesson, the student shall be able to make hydrant connections and draft from a static water source according.

Slides:



Advertisements
Similar presentations
Chapter 19 Lesson Goal After completing this lesson, the student shall be able to communicate effectively by radio and through various reports following.
Advertisements

Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
UNITED NATIONS Shipment Details Report – January 2006.
Document #07-2I RXQ Customer Enrollment Using a Registration Agent (RA) Process Flow Diagram (Move-In) (mod 7/25 & clean-up 8/20) Customer Supplier.
Unit C: Agricultural Power Systems
Exit a Customer Chapter 8. Exit a Customer 8-2 Objectives Perform exit summary process consisting of the following steps: Review service records Close.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Year 6 mental test 10 second questions
Site Safety Plans PFN ME 35B.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Chapter 12 Lesson Goal After completing this lesson, the student shall be able to make hydrant connections and draft from a static water source according.
Fire Protection Systems
2 |SharePoint Saturday New York City
VOORBLAD.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
© 2012 National Heart Foundation of Australia. Slide 2.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
Functional Areas & Positions
Chapter 16 Lesson Goal After completing this lesson, the student shall be able to operate various fire detection, alarm, and suppression systems and operate.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Equal or Not. Equal or Not
Slippery Slope
Januar MDMDFSSMDMDFSSS
Analyzing Genes and Genomes
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Intracellular Compartments and Transport
Learning Objective 1 Describe the safety considerations taken when service testing a fire hose.
PSSA Preparation.
Essential Cell Biology
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Energy Generation in Mitochondria and Chlorplasts
Chapter 13 Lesson Goal After completing this lesson, the student shall be able to use various hose appliances and tools, prepare a test site for service.
Water supply and drafting. Objectives Understand and be able to demonstrate the different hydrant lays and hook ups Explain/demonstrate how to operate.
LoneStar Fire Specialties
CVFD Training – Water Supply SFFMA Training Objectives: –
WATER SUPPLY Copyright© Delmar is a division of Thomson Learning.
Chapter 9 Water Supply.
1402 Hybrid Firefighter I 6 th Edition Chapter 14 Water Supply.
Chapter 9 Water Supply.
Pumping Apparatus Driver/Operator
Water Supply 1. Water Supply Components
Intermediate SFFMA Objectives: – Hrs received.
Learning Objective 1 Explain the ways water supply system components are used by firefighters.
Water Supply.
1. 2 Introduction We continue to develop new methods and materials for extinguishing fires Water still remains the primary extinguishing agent because.
CHAPTER 9 Copyright © 2007 Thomson Delmar Learning 9.1 Water Supply.
Water Supply Skill Drills.
Water Supply Firefighter II.
FVCC Fire Rescue Water Supply.
15 Water Supply. 2 Objectives Describe the sources of water for a municipal water supply system. Explain the purpose of a water treatment facility. Describe.
Firefighter III Module B Water Supply (4-19) (4-19)
Tanker Operations In Water Supply Michael Crawford July 2002.
15 Water Supply. 15 Objectives (1 of 2) Discuss rural water supplies. Describe how portable tanks are used to supply water for firefighting. Describe.
Water supply definitions Water supply definitions Four Basic components of a water supply system Four Basic components of a water supply system Methods.
Video: Fire Hydrant Time: 1:01 Chap 14-1
Water Shuttle Operations
2013Q1.
WATER SUPPLY FOR NON-HYDRANT AREAS
State of Georgia BASIC FIRE FIGHTER TRAINING COURSE
Presentation transcript:

Essentials of Fire Fighting, 5th Edition Chapter 12 — Water Supply Firefighter I

Chapter 12 Lesson Goal After completing this lesson, the student shall be able to make hydrant connections and draft from a static water source according to the authority having jurisdiction (AHJ). Firefighter I

Specific Objectives 1. Describe dry-barrel and wet-barrel hydrants. 2. Discuss fire hydrant marking and location. 3. Summarize potential problems to look for when inspecting fire hydrants. (Continued) Firefighter I

Specific Objectives 4. Explain the process of fire hydrant testing. 5. Discuss alternative water supplies. 6. Discuss rural water supply operations. 7. Operate a hydrant. (Skill Sheet 12-I-1) (Continued) Firefighter I

Specific Objectives 8. Make soft-sleeve and hard-suction hydrant connections. (Skill Sheet 12-I-2) 9. Connect and place a hard-suction hose for drafting from a static water source. (Skill Sheet 12-I-3) 10. Deploy a portable water tank. (Skill Sheet 12-I-4) Firefighter I

Hydrants Usually made of cast iron with bronze working parts Must be opened and closed slowly to prevent damage Firefighter I

Dry-Barrel Hydrants Installed in areas where prolonged periods of subfreezing weather are common Have main valve located below frost line that prevents water from entering hydrant barrel (Continued) Firefighter I

Dry-Barrel Hydrants Operation Must be completely open or closed to prevent leaking When shutting down, verify that water left in hydrant barrel is draining out (Continued) Firefighter I

Dry-Barrel Hydrants In some areas, hydrants must be pumped out after each use to prevent water contamination If water is bubbling out of ground, broken component in barrel is allowing water to get past drain opening Firefighter I

Wet-Barrel Hydrants Installed in warmer climates where prolonged periods of subfreezing weather uncommon Horizontal compression-type valve at each outlet Always filled with water Firefighter I

Fire Hydrant Marking Rate of flow from individual hydrants varies for several reasons NFPA® has developed system of marking hydrants Local color-coding may differ from NFPA® Firefighter I

Fire Hydrant Locations Decisions usually made by water department personnel based on recommendations from fire department Should not be spaced more than 300 feet (100 m) apart in high-value districts (Continued) Firefighter I

Fire Hydrant Locations Locate hydrant at every other intersection Intermediate hydrants may be required where distances between intersections exceed 350 to 400 feet (105 to 120 m) Other factors affect location/spacing Firefighter I

Hydrant Testing and Inspections Responsibility of fire department personnel Firefighters should look for wide array of items Firefighter I

Fire Hydrant Testing Process Many departments no longer responsible for testing Most basic test normally conducted is flow test Firefighter I

Flow Test Steps Select hydrant Remove all outlet caps Inspect outlet threads Lubricate all outlet threads Replace all caps except one 2½-inch (65 mm) cap (Continued) Firefighter I

Flow Test Steps Connect cap-type pressure gauge to outlet on second hydrant nearby Turn second hydrant on, record static pressure Turn test hydrant on fully, allow water to flow briefly (Continued) Firefighter I

Flow Test Steps Use pitot tube, gauge to measure flow rate Record pitot gauge reading Take/record residual pressure reading from gauge connected to second hydrant before shutting test hydrant off (Continued) Firefighter I

Flow Test Steps Turn off second hydrant, remove gauge, replace cap Turn off test hydrant Test for vacuum created by operating drain valve (dry barrel) Replace cap on outlet Repeat procedure with each hydrant Firefighter I

Alternative Water Supply Sources Lakes Ponds Rivers Ocean Swimming pools Farm stock tanks Underground cisterns Firefighter I

Drafting From Alternative Water Supplies Process of drawing water from static source to pumper Can use almost any static source of water if sufficient in quantity, not contaminated Depth of water from which to draft Firefighter I

Dry Hydrants Installed at static water sources to increase water supply available Usually constructed of steel or PVC pipe with strainers at water source, steamer ports to connect to pumper Designed to supply at least 1,000 gpm (4 000 L/min) (Continued) Firefighter I

Water Shuttles Involve hauling water from supply source to portable tanks from which water may be drawn to fight fire Recommended for distances greater than ½ mile (0.8 km) or greater than the fire department’s capability of laying supply hoselines (Continued) Firefighter I

Water Shuttles Critical elements Fast-fill, fast-dump capabilities Water supply officers at fill/dump sites Traffic control Hydrant operations Hookups Tank venting Firefighter I

Water Shuttles Key components Dump site Portable tanks (Continued) Firefighter I

Water Shuttles Ways in which water tenders unload Gravity dumping Jet dumps that increase flow rate Apparatus-mounted pumps Combination of these methods (Continued) Firefighter I

Water Shuttles According to NFPA® 1901, water tenders on level ground should be capable of dumping/filling at rates of at least 1,000 gpm (4 000 L/min) (Continued) Firefighter I

Water Shuttles To fill water tenders quickly, use best fill site, large hoselines, multiple hoselines Multiple portable pumps may be necessary Firefighter I

Relay Pumping Can be used in situations where water source is close enough to fire scene to render water shuttles unnecessary Factors to consider Water supply must be capable of maintaining desired volume of water Relay must be established quickly (Continued) Firefighter I

Relay Pumping Determining number of pumpers needed and distance between them Several factors to take into account Apparatus with greatest pumping capacity should be at water source (Continued) Firefighter I

Relay Pumping Determining number of pumpers needed and distance between them Large-diameter hose or multiple hoselines increase distance, volume a relay can supply Water supply officer should consider all factors and determine correct distance Firefighter I

Summary Because water is still the primary fire extinguishing agent used by firefighters in North America, and because fires often occur considerable distances from major water sources, fire departments must develop ways to transport available water from its source to where it is needed. (Continued) Firefighter I

Summary Firefighters must know what water supply systems have been developed and what their responsibilities are when these systems are used. Firefighter I

Review Questions 1. What is the difference between dry-barrel and wet-barrel hydrants? 2. How are fire hydrants marked? 3. What factors affect hydrant location and spacing? (Continued) Firefighter I

Review Questions 4. List alternative water supplies. 5. What are three key components of a water shuttle operation? Firefighter I