 Objective: To determine whether or not a curved relationship can be salvaged and re-expressed into a linear relationship. If so, complete the re-expression.

Slides:



Advertisements
Similar presentations
Copyright © 2010 Pearson Education, Inc. Slide A least squares regression line was fitted to the weights (in pounds) versus age (in months) of a.
Advertisements

Re-Expressing Data Get it Straight!. Page 192, #2, 4, 15, 19, 22 Residuals Pg 193, # 11, 23, 27, 33, 45 Pg 195, 16, 22, 23,25,37 Regression Wisdom Pg.
Chapter 10: Re-expressing data –Get it straight!
Statistical Methods Lecture 28
Chapter 4 Review: More About Relationship Between Two Variables
Copyright © 2011 Pearson Education, Inc. Curved Patterns Chapter 20.
Copyright © 2014, 2011 Pearson Education, Inc. 1 Chapter 20 Curved Patterns.
Chapter 10: Re-Expressing Data: Get it Straight
Extrapolation: Reaching Beyond the Data
Chapter 10 Re-Expressing data: Get it Straight
Get it Straight!! Chapter 10
Copyright © 2012 Pearson Education. All rights reserved Copyright © 2012 Pearson Education. All rights reserved. Chapter 17 Understanding Residuals.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 10 Re-expressing Data: Get it Straight!
Chapter 10 Re-expressing the data
Re-expressing data CH. 10.
Re-expressing the Data: Get It Straight!
Chapter 10 Re-expressing Data: Get it Straight!!
17.2 Extrapolation and Prediction
Chapter 17 Understanding Residuals © 2010 Pearson Education 1.
1 Re-expressing Data  Chapter 6 – Normal Model –What if data do not follow a Normal model?  Chapters 8 & 9 – Linear Model –What if a relationship between.
+ Hw: pg 788: 37, 39, 41, Chapter 12: More About Regression Section 12.2b Transforming using Logarithms.
Inference for regression - Simple linear regression
Transforming to achieve linearity
Chapter 4: More on Two-Variable (Bivariate) Data.
Statistics Review Chapter 10. Important Ideas In this chapter, we have leaned how to re- express the data and why it is needed.
Chapter 10: Re-Expressing Data: Get it Straight AP Statistics.
?v=cqj5Qvxd5MO Linear and Quadratic Functions and Modeling.
Chapter 10: Re-expressing Data It’s easier than you think!
M25- Growth & Transformations 1  Department of ISM, University of Alabama, Lesson Objectives: Recognize exponential growth or decay. Use log(Y.
“Numbers are like people… torture them long enough and they’ll tell you anything...” Linear transformation.
Relationships If we are doing a study which involves more than one variable, how can we tell if there is a relationship between two (or more) of the.
DO NOW Read Pages 222 – 224 Read Pages 222 – 224 Stop before “Goals of Re-expression” Stop before “Goals of Re-expression” Answer the following questions:
Chapter 10 Re-expressing the data
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
Chapter 10 Re-expressing Data: Get It Straight!. Slide Straight to the Point We cannot use a linear model unless the relationship between the two.
Chapter 10: Re- expressing Data by: Sai Machineni, Hang Ha AP STATISTICS.
Lecture 6 Re-expressing Data: It’s Easier Than You Think.
Copyright © 2010 Pearson Education, Inc. Slide A least squares regression line was fitted to the weights (in pounds) versus age (in months) of a.
Bivariate Data Analysis Bivariate Data analysis 4.
Chapter 8 Linear Regression HOW CAN A MODEL BE CREATED WHICH REPRESENTS THE LINEAR RELATIONSHIP BETWEEN TWO QUANTITATIVE VARIABLES?
Reexpressing Data. Re-express data – is that cheating? Not at all. Sometimes data that may look linear at first is actually not linear at all. Straight.
Section 4.1 Transforming Relationships AP Statistics.
If the scatter is curved, we can straighten it Then use a linear model Types of transformations for x, y, or both: 1.Square 2.Square root 3.Log 4.Negative.
Chapter 5 Lesson 5.4 Summarizing Bivariate Data 5.4: Nonlinear Relationships and Transformations.
Re-Expressing Data. Scatter Plot of: Weight of Vehicle vs. Fuel Efficiency Residual Plot of: Weight of Vehicle vs. Fuel Efficiency.
Copyright © 2010 Pearson Education, Inc. Chapter 10 Re-expressing Data: Get it Straight!
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 10 Re-expressing Data: Get it Straight!
Chapter 10 Notes AP Statistics. Re-expressing Data We cannot use a linear model unless the relationship between the two variables is linear. If the relationship.
Statistics 7 Scatterplots, Association, and Correlation.
Chapter 4 More on Two-Variable Data. Four Corners Play a game of four corners, selecting the corner each time by rolling a die Collect the data in a table.
Statistics 10 Re-Expressing Data Get it Straight.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 10 Re-expressing Data: Get it Straight!
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
 Understand why re-expressing data is useful  Recognize when the pattern of the data indicates that no re- expression will improve it  Be able to reverse.
Chapter 10: Re-expressing Data (Get it Straight)
WARM UP: Use the Reciprocal Model to predict the y for an x = 8
Let’s Get It Straight! Re-expressing Data Curvilinear Regression
Chapter 10: Re-Expression of Curved Relationships
Re-expressing the Data: Get It Straight!
Bell Ringer Make a scatterplot for the following data.
Chapter 10 Re-Expressing data: Get it Straight
Re-expressing Data: Get it Straight!
Re-expressing the Data: Get It Straight!
Re-expressing the Data: Get It Straight!
So how do we know what type of re-expression to use?
Re-expressing Data:Get it Straight!
Lecture 6 Re-expressing Data: It’s Easier Than You Think
Inferences for Regression
Re-expressing Data: Get it Straight!
Presentation transcript:

 Objective: To determine whether or not a curved relationship can be salvaged and re-expressed into a linear relationship. If so, complete the re-expression.

 We cannot use a linear model unless the relationship between the two variables is linear. Often re-expression can save the day, straightening bent relationships so that we can fit and use a simple linear model.  Two simple ways to re-express data are with logarithms and reciprocals.

Original Scatterplot  The relationship between fuel efficiency (in miles per gallon) and weight (in pounds) for late model cars looks fairly linear at first: Residual Plot  A look at the residuals plot shows a problem:

Re-Expressed Scatterplot  We can re-express fuel efficiency as gallons per hundred miles (a reciprocal- multiplying each by 100) and eliminate the bend in the original scatterplot: Re-Expressed Residual Plot  A look at the residuals plot for the new model seems more reasonable:

Ladder of Powers  There is a family of simple re-expressions that move data toward our goals in a consistent way. This collection of re- expressions is called the Ladder of Powers.  The Ladder of Powers orders the effects that the re- expressions have on data. o The farther you move from “1” in the ladder of powers, the greater the effect on the original data.

Ratios of two quantities (e.g., mph) often benefit from a reciprocal. The reciprocal of the data –1 An uncommon re-expression, but sometimes useful. Reciprocal square root –1/2 Measurements that cannot be negative often benefit from a log re-expression. We’ll use logarithms here “0” Counts often benefit from a square root re- expression. Square root of data values ½ Data with positive and negative values and no bounds are less likely to benefit from re- expression. Raw data1 Try with unimodal distributions that are skewed to the left. Square of data values 2CommentNamePower

Using the ladder of powers, what transformations might you use as a starting point? 1. You want to model the relationship between the number of birds counted at a nesting site and the temperature (in degrees Celsius). The scatterplot of counts vs. temperature shows an upwardly curving pattern, with more birds spotted at higher temperatures. 2. You want to model the relationship between prices for various items in Paris and in Hong Kong. The scatterplot of Hong Kong prices vs. Parisian prices shows a generally straight pattern with a small amount of scatter. 3. You want to model the population growth of the US over the past 200 years. The scatterplot shows a strongly upwardly curved pattern.

 When none of the data values is zero or negative, logarithms can be a helpful ally in the search for a useful model.  Try taking the logs of both the x- and y-variable.  Then re-express the data using some combination of x or log(x) vs. y or log(y).

 When none of the data values is zero or negative, logarithms can be a helpful ally in the search for a useful model.  Try taking the logs of both the x- and y-variable.  Then re-express the data using some combination of x or log(x) vs. y or log(y).

 If there’s a curve in the scatterplot, why not just fit a curve to the data?

 The mathematics and calculations for “curves of best fit” are considerably more difficult than “lines of best fit.”  Besides, straight lines are easy to understand. o We know how to think about the slope and the y- intercept.

 Let’s try an example to note the techniques to re-express that tuition rates verses the years at Arizona State University:

 Beware of multiple modes. o Re-expression cannot pull separate modes together.  Watch out for scatterplots that turn around. o Re-expression can straighten many bent relationships, but not those that go up then down, or down then up.

 Watch out for negative data values. o It’s impossible to re-express negative values by any power that is not a whole number on the Ladder of Powers or to re-express values that are zero for negative powers.  Watch for data far from 1. o Data values that are all very far from 1 may not be much affected by re-expression unless the range is very large. If all the data values are large (e.g., years), consider subtracting a constant to bring them back near 1.

 Day 1:  Day 1: 9.5 Problem Set Online # 1, 2, 5, 6, 7  Day 2:  Day 2: 9.5 Problem Set Online # 14, 15, 16