4. Inequalities. 4.1 Solving Linear Inequalities Problem Basic fee: $20 Basic fee: $20 Per minute: 5¢ Per minute: 5¢ Budget: $40 Budget: $40 How many.

Slides:



Advertisements
Similar presentations
Chapter 1 Applications and More Algebra.
Advertisements

Solving Systems by Elimination
System of linear Equation
Which table represents a function?
Solving Linear Systems in Three Variables 3-6
6.4 Solving Compound Inequalities I can… solve compound inequalities containing the word and and graph their solution sets. I can… solve compound inequalities.
September 8, 2011 "The way to be nothing is to do nothing." -- Nathaniel Howe Test prep, p. 18 #
5.7 Graph Linear Inequalities in Two Variables
Solving Inequalities Solving inequalities follows the same procedures as solving equations. There are a few special things to consider with.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Division ÷ 1 1 ÷ 1 = 1 2 ÷ 1 = 2 3 ÷ 1 = 3 4 ÷ 1 = 4 5 ÷ 1 = 5 6 ÷ 1 = 6 7 ÷ 1 = 7 8 ÷ 1 = 8 9 ÷ 1 = 9 10 ÷ 1 = ÷ 1 = ÷ 1 = 12 ÷ 2 2 ÷ 2 =
Chapter 1 Tools of Algebra.
3-4 Linear Programming Warm Up Lesson Presentation Lesson Quiz
Solving Quadratic Inequalities
Using Graphs and Tables to Solve Linear Systems 3-1
Linear Equations in Two Variables
2-1 Solving Linear Equations and Inequalities Warm Up
Graphing Linear Inequalities in Two Variables
2 pt 3 pt 4 pt 5pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2pt 3 pt 4pt 5 pt 1pt 2pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4pt 5 pt 1pt Two-step linear equations Variables.
solved problems on optimization
Jeopardy Topic 1Topic Q 1Q 6Q 11Q 16Q 21 Q 2Q 7Q 12Q 17Q 22 Q 3Q 8Q 13Q 18Q 23 Q 4Q 9Q 14Q 19Q 24 Q 5Q 10Q 15Q 20Q 25.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
2.4 Using Linear Models 1.Modeling Real-World Data 2.Predicting with Linear Models.
Lesson 3-3 Ideas/Vocabulary
A4.e How Do I Graph The Solution Set of A Linear Inequality in Two Variables? Course 3 Warm Up Problem of the Day Lesson Presentation.
= (x + 6) (x + 2) 1. x2 +8x x2 +16x + 48 = (x + 12) (x + 4)
Welcome to Who Wants to be a Millionaire
5 Minute Check Complete on the back of your homework. An African elephant eats 400 lbs of vegetation each day. 1. Write an equation to find v, the number.
$100 $200 $300 $400 $100 $200 $300 $400 $100 $200 $300 $400 $100 $200 $300 $400 $100 $200 $300 $400.
Formula Ratio Proportion Percent of change Weighted Average Equivalent Equations Solve an Equation Multistep Equations identify " And in the end it's not.
Economic Tasks Topic
Copyright © Cengage Learning. All rights reserved.
Using Graphs and Tables to Solve Linear Systems 3-1
3-6 Solving Equations Containing Integers Warm Up Problem of the Day
§ 4.5 Linear Programming.
Linear Programming, A Geometric Approach
1. The Problem 2. Tabulate Data 3. Translate the Constraints 4. The Objective Function 5. Linear Programming Problem 6. Production Schedule 7. No Waste.
Summary Subsets of Real Numbers
Inequalities and Systems
Solving an Absolute Value Equation and Inequality.
Created by Susan Neal $100 Fractions Addition Fractions Subtraction Fractions Multiplication Fractions Division General $200 $300 $400 $500 $100 $200.
Chapter 1: Expressions, Equations, & Inequalities
1..
Introduction Situations in the real world often determine the types of values we would expect as answers to equations and inequalities. When an inequality.
Do Now 1/10/11 Copy HW in your planner. Copy HW in your planner. Text p. 430, #4-20 evens, evens Text p. 430, #4-20 evens, evens Text p. 439,
 .
Review 1-1 – 1-6. Give expression with numbers substituted then evaluate: a = ⅔b = -3c =5 1.ab – 8c 2. a 2 - bc (⅔)(-3) – 8(5) = -42 (⅔) 2 – (-3)(5) =
Hosted by Mrs. Dickard RatiosProportionsUnit Rates Indirect Measurement
Equal or Not. Equal or Not
Slippery Slope
Solving Systems by Substitution
Situations That Always or Never Happen.  Job A = 30, yJob B = 28, y  When is the pay in Job A better than the pay in Job B?  Write.
Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300 Q $400 Q $500 Final Jeopardy SubstitutionAddition Student Choice Special Systems Challenge Jeopardy.
Solving Addition and Subtraction Inequalities
4.6 Quick Graphs Using Slope-Intercept Form 1 GOAL
9.2 Absolute Value Equations and Inequalities
Lial/Hungerford/Holcomb/Mullins: Mathematics with Applications 11e Finite Mathematics with Applications 11e Copyright ©2015 Pearson Education, Inc. All.
Completing the Square Topic
Sections 5.1 & 5.2 Inequalities in Two Variables
1 Sections 5.1 & 5.2 Inequalities in Two Variables After today’s lesson, you will be able to graph linear inequalities in two variables. solve systems.
2.4 – Linear Inequalities in One Variable
1.7 – Linear Inequalities and Compound Inequalities
6.1 Solving Linear Inequalities in One Variable
1 Note that the “>” can be replaced by ,
9.3 – Linear Equation and Inequalities 1. Linear Equations 2.
Solving Linear Equations Define and use: Linear Equation in one variable, Solution types, Equivalent Equations.
Linear Inequalities in One Variable
Type Example Solution Linear equations 2x – 8 = 3(x + 5) A number in one variable x = -23.
6.1 Solving Linear Inequalities in One Variable
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Presentation transcript:

4. Inequalities

4.1 Solving Linear Inequalities Problem Basic fee: $20 Basic fee: $20 Per minute: 5¢ Per minute: 5¢ Budget: $40 Budget: $40 How many minutes?: x How many minutes?: x x ≤ 40 x ≤ 400

Notations Closed interval [a, b] = {x | a ≤ x ≤ b} [a, b] = {x | a ≤ x ≤ b} Open interval (a, b) = {x | a < x < b} (a, b) = {x | a < x < b} ab ab

Notations Infinite interval [a, ∞ ) = {x | a ≤ x < ∞ } [a, ∞ ) = {x | a ≤ x < ∞ } Infinite interval (- ∞, b] = {x | - ∞ < x ≤ b} (- ∞, b] = {x | - ∞ < x ≤ b} a b

Your Turn Express in set-builder notation. [a, b) [a, b) (- ∞, b) (- ∞, b)

Solving Inequalities in One Variable 0.05x + 20 ≤ x ≤ 20 x ≤ 20/0.05 x ≤ 400 [0, 400] (Interval notation) {x | x ≤ 400} (set-builder notation)

Properties of Inequalities Addition a < b → a + c < b + c a < b → a - c < b – c a < b → a + c < b + c a < b → a - c < b – c Positive Multiplication (c > 0) a < b → ac < bc a < b → a /c < b/c a < b → ac < bc a < b → a /c < b/c Negative Multiplication (c < 0) a < b → ac ≥ bc a < b → a /c ≥ b/c a < b → ac ≥ bc a < b → a /c ≥ b/c

Example 1 -2x – 4 > x x > 9 (-1/3)(-3x) 9 (-1/3)(-3x) < (-1/3)9 x < -3 (- ∞,-3)

Example 2 (x + 3) (x – 2) ≥ (x + 3) 4(x – 2) ≥ x + 9 ≥ 4x – x ≥ -14 x ≤ 14 (-∞, 14]

Special Cases x > x + 1 {x | x > x + 1} {x | x > x + 1} What kind of set is this? What kind of set is this? x < x + 1 {x } x < x + 1} {x } x < x + 1} What kind of set is this? What kind of set is this?

4.2 Compound Inequalities Intersection of Sets Given set A and B, intersection A and B, A ∩ B = {x | x ε A AND x ε B} Given set A and B, intersection A and B, A ∩ B = {x | x ε A AND x ε B} A ∩ B A ∩ B B

Compound Inequalities Union of Sets Given set A and B, union of A and B, A U B = {x | x ε A OR x ε B} Given set A and B, union of A and B, A U B = {x | x ε A OR x ε B} A UB A U B A

Intersection of Sets Given: A = {1, 2, 3,5, 9} B = {3, 5, 9, 10, 12} A ∩ B = {5, 9} Given: A = {x | x ≥ 3} B = {x | x ≤ 10} A ∩ B = {x | x ≥ 3 AND x ≤ 10 } [ ] 310

Union and Intersection of Sets Given: A = set of all male students at CUH A = set of all male students at CUH B = set of all female students at CUH B = set of all female students at CUH C = set of all freshman students at CUH C = set of all freshman students at CUH Draw a diagram of: A ∩ B A ∩ B A U B A U B A ∩ C A ∩ C A U C A U C

Solving Compound Inequality Given: 2x – 7 > 3 AND 5x – 4 3 AND 5x – 4 < 6 What does it mean: Solve the compound inequality? It means: Find the set of x so that both inequalities are true Solution Set: {x | 2x – 7 > 3 AND 5x – 4 3 AND 5x – 4 < 6}

Solving an AND Compound Inequality 2x – 7 ≥ 3 AND 5x – 4 ≤ 6 2x ≥ x ≤ x ≥ 10 5x ≤ 10 x ≥ 10/2 x ≤ 10/5 x ≥ 5 x ≤ 2 Solution Set: { Φ } 25

Solving an AND Compound Inequality -3 < 2x + 1 ≤ 3 This means: (-3 < 2x + 1 AND 2x + 1 ≤ 3) -3 – 1 < 2x + 1 – 1 ≤ < 2x ≤ 2 -1 < x ≤ 1 Solution Set: { x | -1 < x ≤ 1 } 1

Solving an OR Compound Inequality Given: 2x – 3 < 7 OR 35 – 4x ≤ 3 2x < 4 OR -4x ≤ -32 x < 4 OR x ≥ 8 Take the union of solution sets {x | x < 4 U x ≥ 8} = {x | x < 4 or x ≥ 8} 48

Solving an OR Compound Inequality Given: 3x – 5 ≤ 13 OR 5x + 2 > -3 3x ≤ 18 OR 5x > -5 x ≤ 6 OR x > -1 Take the union of solution sets {x | x ≤ 6 U x > -1} = {x | x ≤ 6 or x > -1} = R 6

Your Turn Find the following sets 1){a, b, c, d, e} ∩ {b, c, 2, 3, x, y} 2){a, b, c, d, e} U {b, c, 2, 3, x, y} Solve the following 1)3 ≤ 4x – 3 < 19 2)3x 10

4.3 Equations & Inequalities Involving Absolute Values Absolute value of A -- |A| -- where A is any algebraic expression: |A| = c  A = c or A = -c, where c > 0 |A| = c  A = c or A = -c, where c > 0 |2x – 3| = 11 2x – 3 = 11 or 2x – 3 = cc AA |A|

Solving Equation Involving Absolute Value Solve for x: |2x – 3| = 11 2x – 3 = 11 or 2x – 3 = -11 2x = 14 2x = -8 x = 7 x = - 4 {4, 7} Solve for x: 5|1 - 4x| -15 = 0 |1 – 4x| = 15/5 = 3 1 – 4x = 3 or 1 – 4x = -3 -4x = 2 -4x = -4 x = -1/2 x = 1 {-1/2, 1}

Equation With 2 Absolute Values Solve for x: |2x – 7| = |x + 3| 2x – 7 = (x + 3) or 2x – 7 = -(x + 3) x = 10 2x – 7 = -x – 3 3x = 4 x = 4/3 {4/3, 10}

Solving Absolute Value Inequality (Using Boundary Points) Solve and graph: |2x + 3| ≥ 5 1.Solve the equation 2x + 3 = 5 or 2x + 3 = -5 x = 1 x = -4 2.Locate the boundary points 3.Choose a test value in each interval and substitute in the inequality -4 1

Solve and graph: |2x + 3| ≥ 5 2.Locate the boundary points 3.Choose a test value in each interval and substitute in inequality Interval Test value CheckConclusion (-∞, -4) |2 ∙(-5) + 3| ≥ 5 |-7| ≥ 5 true (-∞, -4) in solution set (-4, 1) 0 |2 ∙ 0 + 3| ≥ 5 |3| ≥ 5 false (-4, 1) not in solution set (1, ∞) 2 |2 ∙ 2 + 3| ≥ 5 |7| ≥ 5 true (1, ∞) in solution set

Solve and graph: |2x + 3| ≥ Write the solution set. Check for boundaries. Preliminary Solution: (-∞, -4) U (1, ∞) Because |2x + 3| = 5, we need to include the solution set of this equation (i.e., boundaries): x = -4, 1. (This was found in step 1.) Final Solution: (-∞, -4] U [1, ∞) - 4 1

Using Boundary Points Solve and graph: |2x -5| ≥ 3 1.Solve the equation 2x – 5 = 3 or 2x – 5 = -3 x = 4 x = 1 2.Locate the boundary points 3.Choose a test value in each interval and substitute in inequality 1 4

Solve and graph: |2x - 5| ≥ 3 2.Locate the boundary points 3.Choose a test value in each interval and substitute in inequality 1 4 Interval Test value CheckConclusion (-∞, 1) 0 |2 ∙ 0 – 5| ≥ 3 |-5| ≥ 3 true (-∞, 1) in solution set (1, 4) 2 |2 ∙ 2 - 5| ≥ 3 |-1| ≥ 3 false (1, 4) not in solution set (4, ∞) 5 |2 ∙ 5 - 5| ≥ 3 |5| ≥ 5 true (4, ∞) in solution set

Solve and graph: |2x – 5| ≥ Write the solution set. Check for boundaries. Preliminary Solution: (-∞, 1) U (4, ∞) Because |2x - 5| = 3, we need to include the solution set of this equation (i.e., boundaries): x = 1, 4 (This was found in step 1.) Final Solution: (-∞, 1] U [4, ∞) 1 4

Solving Absolute Value Inequality (Using Compound Inequalities) Note: Solution set of |x| < 2 is (-2, 2) (-2, 2)  -2 < x < 2 Solution set of |x| < 2 is (-2, 2) (-2, 2)  -2 < x < 2 Solution set of |x| > 2 is (-∞, -2) U (2, ∞) Solution set of |x| > 2 is (-∞, -2) U (2, ∞) (-∞, -2) U (2, ∞)  x 2

Solving Absolute Value Inequality (Using Compound Inequalities) Solve: |x – 4| < 3 -3 < x – 4 < 3 1 < x < 7

Solving Absolute Value Inequality (Using Compound Inequalities) Solve: |2x + 3| ≥ 5 2x + 3 ≥ 5 or 2x + 3 ≤ -5 2x ≥ 2 or 2x ≤ -8 x ≥ 1 or x ≤

Your Turn Solve inequalities using equivalent compound inequalities 1.|x – 2| < 5 2.|2x – 5| ≥ 3

4.4 Linear Inequalities in 2 Variables Solve: 2x – 3y ≥ 6 1.Graph: 2x – 3y = 6 To find y-intercept To find x-intercept y = 0 x = 0 2x = 6 -3y = 6 x = 3 y = -2 (0, -2) (3, 0) 2x – 3y > 6 2x – 3y = 6 2x – 3y < 6

2.Choose a test point in one half-plane and check with original inequality. 2x – 3y ≥ 6 Choose A (0, 0) as a test point 0 – 0 ≥ 6 0 ≥ 6 false—A is outside the solution set

3.If A(0, 0) is not in solution set, the other half- plane is the solution set of 2x – 3y ≥ 6 Because of ≥, include the boundary line in the graph of the solution set. 2x – 3y < 6 2x – 3y = 6 2x – 3y > 6 A(0, 0) Graph of : {x | 2x – 3y ≥ 6}

Your Turn Graph the following inequality: 1.4x – 2y ≥ 8 2.x/4 + y/2 < 1

Graphing System of Linear Inequalities Graph solution set of: x – y < 1 2x + 3y ≥ 12 Graph equations x – y = 1 2x + 3y = 12 x-intercept: x-intercept: y = 0 y = 0 x – 0 = 1 2x + 0 = 12 x = 1 x = 6 (1, 0) (6, 0) Graph equations x – y = 1 2x + 3y = 12 x-intercept: x-intercept: y = 0 y = 0 x – 0 = 1 2x + 0 = 12 x = 1 x = 6 (1, 0) (6, 0)

Graphing System of Linear Inequalities Graph equalities x – y = 1 2x + 3y = 12 x-intercept: x-intercept: (1, 0) (6, 0) y-intercept: y-intercept: x = 0 x = 0 0 – y = y = 12 -y = 1 3y = 12 y = -1 y = 4 (0, -1) ( 0, 4) Points for: x – y = 1 Points for: 2x + 3y = 12 (1, 0) (0, -1) (6, 0) (0, 4) Graph equalities x – y = 1 2x + 3y = 12 x-intercept: x-intercept: (1, 0) (6, 0) y-intercept: y-intercept: x = 0 x = 0 0 – y = y = 12 -y = 1 3y = 12 y = -1 y = 4 (0, -1) ( 0, 4) Points for: x – y = 1 Points for: 2x + 3y = 12 (1, 0) (0, -1) (6, 0) (0, 4)

Graphing System of Linear Inequalities 2x + 3y = 12x – y = 1 (0, 0) (1, 0) (0, 4) (6, 0)

Graphing System of Linear Inequalities Choose a point and check with original inequalities. Pick (0, 0) Pick (0, 0) Part of x – y < 1? Part of 2x + 3y ≥ 12? Check: Check: 0 – 0 < 1? ≥ 12? 0 < 1? 0 ≥ 12? true false this half-plane other half-plane Choose a point and check with original inequalities. Pick (0, 0) Pick (0, 0) Part of x – y < 1? Part of 2x + 3y ≥ 12? Check: Check: 0 – 0 < 1? ≥ 12? 0 < 1? 0 ≥ 12? true false this half-plane other half-plane

Graphing System of Linear Inequalities 2x + 3y = 12 x – y = 1 (0, 0)

Your Turn Graph the solution set of the system: x – 3y < 6 2x + 3y ≥ -6

4.5 Linear Programming Problem: A division of a furniture company specializes in manufacturing bookcases and computer desks. A division of a furniture company specializes in manufacturing bookcases and computer desks. The division makes $25 per bookcase and $55 per desk. The division makes $25 per bookcase and $55 per desk. To maintain quality, the division can make a maximum of 80 bookcases and desks (total) per day To maintain quality, the division can make a maximum of 80 bookcases and desks (total) per day

4.5 Linear Programming Problem (cont.) Because of customer demands, between 30 and 80 bookcases must be made daily. Because of customer demands, between 30 and 80 bookcases must be made daily. Furthermore, at least 10 and not more than 30 desks must be made per day Furthermore, at least 10 and not more than 30 desks must be made per day How many bookcases and desks must be made each day to maximize profit? How many bookcases and desks must be made each day to maximize profit?

4.5 Linear Programming Solution 1. Use variables to represent quantities x = number of bookcases per month y = desks per month z = profit for month 2. Form objective function z = 25x + 55y 3. Write constraints as inequalities x + y ≤ ≤ x ≤ ≤ y ≤ Graph the inequalities

4.5 Linear Programming 4. Graph the inequalities 1. x + y ≤ 80 x + y = 80 line passes through (80, 0) and (0, 80) ≤ x ≤ 80 y can be any value ≤ y ≤ 30 x can be any value

4.5 Linear Programming 4. Graph the inequalities (80, 0) (0, 80) x + y ≤ ≤ x ≤ ≤ y ≤ 30 A D C B

4.5 Linear Programming 5. Determine the corners of the solution area To find A: x = 30 y = 30 (30, 30) To find B: y = 30 x + 30 = 80 x = 50 (50, 30) To find C: y = 10 x + 10 = 80 x = 70 (70, 10) To find D: (30, 10) (80, 0) (0, 80) x + y = 80 x = 80 y = 30A D C B y = 10 x = 30

4.5 Linear Programming 6. Check the objective equation with the corner points Corner (x, y) Objective Function z = 25x + 55y (30, 30) z = 25(30) + 55(30) = 2400 (50, 30) z = 25(50) + 55(30) = 2900 (70, 10) z = 25(70) + 55(10) = 2300 (30, 10) z = 25(30) + 55(10) = 1300 Solution: 50 bookcases, 30 desks, resulting in $2900 profit

Linear Programming (Another Example) Problem: Food and clothing are shipped to survivors of a hurricane. Each carton of food will feed 12 people, while each carton of clothing will help 5 people. Food and clothing are shipped to survivors of a hurricane. Each carton of food will feed 12 people, while each carton of clothing will help 5 people. Each 20 ft 3 box of food weights 50 lb, and each 10 ft 3 box of food will weight 20 lb Each 20 ft 3 box of food weights 50 lb, and each 10 ft 3 box of food will weight 20 lb Planes are bound by the following constraints Planes are bound by the following constraints Total weight per plane ≤ lb Total volume per plane ≤ 8000 ft 3 How many cartons of food and how many cartons of clothing should be sent with each plane to maximize the number of people who can be helped? How many cartons of food and how many cartons of clothing should be sent with each plane to maximize the number of people who can be helped?

Linear Programming Solution 1. Use variables to represent quantities x = cartons of food y = cartons of clothing z = number of people helped 2. Form objective function z = 12x + 5y 3. Write constraints as inequalities 50x + 20y ≤ 19,000 20x + 10y ≤ 8,000

Linear Programming 4. Graph the inequalities 1. 50x + 20y ≤ x + 20y = Find 2 points—e.g., y-intercept & x-intercept (0, 950) & (380, 0) 2. 20x + 10y ≤ x + 10y = 8000 Find 2 points (0, 800) & (400, 0) y can be any value

Linear Programming 4. Graph the inequalities (380, 0) (0, 950) 20x + 10y ≤ x + 20y ≤ A C B (400, 0) (0, 800)

Linear Programming 5. Determine the corners of the solution area To find A: (0, 800) To find B: 50x + 20y = x + 10y = x + 20y = x – 20y = x = 3000 x = 300 y = 200 (300, 200) To find C: (380, 0) (380, 0) (0, 950) 20x + 10y ≤ x + 20y ≤ A C B (400, 0) (0, 800)

Linear Programming 6. Check the objective equation with the corner points Corner (x, y) Objective Function z = 12x + 5y (0, 800) z = 12(0) + 5(800) = 4000 (300, 200) z = 12(300) + 5(200) = 4600 (380, 0) z = 12(380) + 5(0) = 4560 Solution: 300 food cartons, 200 clothing cartons, resulting in 4600 people helped

Your turn Problem: A theater is presenting a program on drinking and driving for students and their parents. A theater is presenting a program on drinking and driving for students and their parents. Admission $2.00 for parents $1.00 for students. Admission $2.00 for parents $1.00 for students. However, the situation has two constraints: However, the situation has two constraints: The theater can hold no more than 150 people, and every two parents must bring at least one students How many parents and students should attend to raise the maximum amount of money? How many parents and students should attend to raise the maximum amount of money?

Solution Write the objective function Write the objective function Write the constraints inequalities Write the constraints inequalities

Solutions Variables x = number of parents x = number of parents y = number of students y = number of students z = total amount of money z = total amount of money Objective Function z = 2x + y z = 2x + yConstraints x + y ≤ 150 x + y ≤ 150 x ≥ 2y x ≥ 2y

Solution x (parents) y (students) x ≤ 2y

Solution (0, 150) (150, 0) x + y = 150 x = 2y (100, 50)