Group - E Group Members Burdukov, Ilya Igorevich Lewczyk, Tomasz Sithambaram, Sasitharan Penmatcha, Bharath Steszewski, Andrew Joseph MAE412.

Slides:



Advertisements
Similar presentations
Your performance improvement partner 2/25/
Advertisements

Hard Instances of the Constrained Discrete Logarithm Problem Ilya MironovMicrosoft Research Anton MityaginUCSD Kobbi NissimBen Gurion University Speaker:
Remainder & Factor Thms Finding Rational Roots
7B Unit 3 Finding your way Integrated skills. Millie is walking across the road.Millie is walking along the road.Sandy is walking over the bridge.Kitty.
ECE555 Lecture 10 Nam Sung Kim University of Wisconsin – Madison
ECE555 Lecture 8/9 Nam Sung Kim University of Wisconsin – Madison
Group A Christopher Back Joseph Ashwin Franklin Kwong voon Wong Chen Lin Machines and Mechanisms II MAE 512 Final Project SHRIMP Robot Front Leg Design.
MAE 512 Final Project Presentation Design for the front linkage of a shrimp wheeled robot Rob Desjardins Mark Szymanski Christopher Wirz.
The following 5 questions are about VOLTAGE DIVIDERS. You have 20 seconds for each question What is the voltage at the point X ? A9v B5v C0v D10v Question.
Hill Cipher.
From RegentsEarth.com How to play Earth Science Battleship Divide the class into two teams, Red and Purple. Choose which team goes first. The main screen.
Advanced Concepts in Scheduling SCH02 Stephen Rando.
Inside the binary adder. Electro-mechanical relay A solid state relay is a switch that is controlled by a current. When current flows from A to B, the.
The Science of Biology The study of living things.
4 Inputs input_a (double) input_b (double) input_c (double) monitor_state (uint32) 4 Outputs –fail_code (uint32) –monitor_id (uint32) –persistence_count.
VHDL Introdução Paulo C. Centoducatte fevereiro de 2005
O A Corpo 1 Cinemática e Cinética de Partículas no Plano e no Espaço Análise Dinâmica dos Corpos O X Y X1X1 Y1Y1 X2X2 Y2Y2 X3X3 Y3Y3 A B P l = 75 mm l.
1. 2 Memória (R-bit register) Circuito Combinatório D1D1 DRDR TRTR T1T1 X1X1 XLXL Y1Y1 YNYN clockreset MEF.
PLAN DU COLLEGE JEAN MONNET RDC1 er étage. Prendre la feuille de papier millimétré dans le sens de la largeur :
PLAN DU COLLEGE JEAN MONNET RDC1 er étage. Prendre la feuille de papier millimétré dans le sens de la largeur :
Measurement of a Pond Basics of plane geometry Idea of the Coordinate Plane Confining an Area Practical skill Cooperation in the Group Lake measurement.
Managerial Accounting
Possible Memory Redundancy Schemes (redundancy sub-team)
Electronics Merit Badge
Doc.: IEEE Submission January 2010 Rick Roberts (Intel)Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
PIM ECMP Assert draft-hou-pim-ecmp-00 IETF 80, Prague.
Thursday, March 7 Duality 2 – The dual problem, in general – illustrating duality with 2-person 0-sum game theory Handouts: Lecture Notes.
One-to-One Functions; Inverse Function
Instructions for using this template. Remember this is Jeopardy, so where I have written Answer this is the prompt the students will see, and where I.
Calculating Slope m = y2 – y1 x2 – x1.
Slope Problems.
(NH/ 15 N) (ppm) Peptide II Peptide I Peptide III Peptide IV Peptide V Efb residues A29 – R165 Figure 3.10 Chemical shift perturbation of Efb upon titration.
Multivariate Twin Analysis
1 Gauss-Jordan Method. How To complete Problem 2.2 # 29 Produced by E. Gretchen Gascon.
Reducing Order Enforcement Cost in Complex Query Plans Ravindra Guravannavar and S. Sudarshan (To appear in ICDE 2007)
SEQUENCING PROBLEMS.
1 Linked List Demo Node third = new Node(); third.item = "Carol"; third.next = null; Node second = new Node(); second.item = "Bob"; second.next = third;
Free Macro Download from i-present.co.uk by GMARK Ltd.i-present.co.ukGMARK my text Lorem for more information :
The Long Run Aggregate Supply Curve
Overview Functional Testing Boundary Value Testing (BVT)
Testing “Multiple Conditions” with Decision Table Technique
Intelligent Light Control using Sensor Networks Vipul Singhvi 1,3, Andreas Krause 2, Carlos Guestrin 2,3, Jim Garrett 1, Scott Matthews 1 Carnegie Mellon.
A 2bcgskew Fused by a RHSP Veerle Desmet Hans Vandierendonck Koen De Bosschere Ghent University Member HiPEAC.
Engineering drawing is a language of all persons involved in engineering activity. Engineering ideas are recorded by preparing drawings and execution.
Microsoft Office Overview Microsoft Word b Word Processor Create letters, reports and forms.
LT Codes Paper by Michael Luby FOCS ‘02 Presented by Ashish Sabharwal Feb 26, 2003 CSE 590vg.
Roghibin's blog EQUILIBRIUM OF RIGID BODIES KESETIMBANG AN BENDA TEGAR.
Equations of Lines Equations of Lines
Constant, Linear and Non-Linear Constant, Linear and Non-Linear
Submodularity for Distributed Sensing Problems Zeyn Saigol IR Lab, School of Computer Science University of Birmingham 6 th July 2010.
Concepts and Vocabulary
On / By / With The building blocks of the Mplus language.
Gradient of a straight line x y 88 66 44 2 44 4 For the graph of y = 2x  4 rise run  = 8  4 = 2 8 rise = 8 4 run = 4 Gradient = y.
Title Slide Directions:. My Jeopardy Category 1 Category 2 Category 3 Category 4 Category Final Jeopardy.
An S-IAM Application ‘Road-maps’ and Observations towards Capacity Building By Nigel Lowe DBSA Technical Analyst Tel
Using k to Estimate and Test Patterns in the APIM David A. Kenny February 17, 2013.
GCSE Sawston VC Gary Whitton – Head of Science.
LECTURE 25. Course: “Design of Systems: Structural Approach” Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics Moscow.
Park Brow Community Primary School November
University of Texas At El Paso
Shortest Paths (1/11)  In this section, we shall study the path problems such like  Is there a path from city A to city B?  If there is more than one.
Today’s agenda: Potential Changes Around a Circuit. You must be able to calculate potential changes around a closed loop. Emf, Terminal Voltage, and Internal.
Synthesis, Analysis, and Verification Lecture 04c Lectures: Viktor Kuncak VC Generation for Programs with Data Structures “Beyond Integers”
function[y,n]=sigadd(x1,n1,x2,n2)
SATISFIABILITY Eric L. Frederich.
XDI RDF Cell Graphs V This document introduces a notation for graphing XDI RDF statements called cell graphing. The motivation is to have an.
1 General Structural Equation (LISREL) Models Week 3 #2 A.Multiple Group Models with > 2 groups B.Relationship to ANOVA, ANCOVA models C.Introduction to.
22 22 33 33 11 11 X1 X2 X3 X4 X5 X6 X7 X8 X9                    2,1  3,1  3,2 2,1 1,1 3,1 4,2 5,2 6,2 7,3 8,3 9,3.
Ken Youssefi Mechanical & Aerospace Engineering Dept, SJSU.
Presentation transcript:

Group - E Group Members Burdukov, Ilya Igorevich Lewczyk, Tomasz Sithambaram, Sasitharan Penmatcha, Bharath Steszewski, Andrew Joseph MAE412

Introduction Objective of this project is to design and optimize a four bar mechanism for a vehicle to climb over obstacle of a given height. Use different approaches to find 1. Shortest Link 2. Reducing Peak Torque. 3. Reducing The Fluctuation of the torque.

Matlab code for solving the 12 equations P1 = x1 +i*y1; P1 = x1 +i*y1; P2 = x2 +i*y2; P2 = x2 +i*y2; P3 = x3 +i*y3; P3 = x3 +i*y3; delta2 = P2-P1; delta2 = P2-P1; delta3 = P3-P1; delta3 = P3-P1; alpha2 = Alpha2*cv; alpha2 = Alpha2*cv; alpha3 = Alpha3*cv; alpha3 = Alpha3*cv; Xp = [Mx Nx]; Xp = [Mx Nx]; Yp = [My Ny]; Yp = [My Ny]; for n = 1:2 for n = 1:2 R1 = (x1-Xp(n)) + i*(y1-Yp(n)); R1 = (x1-Xp(n)) + i*(y1-Yp(n)); R2 = (x2-Xp(n)) + i*(y2-Yp(n)); R2 = (x2-Xp(n)) + i*(y2-Yp(n)); R3 = (x3-Xp(n)) + i*(y3-Yp(n)); R3 = (x3-Xp(n)) + i*(y3-Yp(n)); R1mag = abs(R1); R1mag = abs(R1); R2mag = abs(R2); R2mag = abs(R2); R3mag = abs(R3); R3mag = abs(R3); zeta1 = atan2(imag(R1),real(R1)); zeta1 = atan2(imag(R1),real(R1)); zeta2 = atan2(imag(R2),real(R2)); zeta2 = atan2(imag(R2),real(R2)); zeta3 = atan2(imag(R3),real(R3)); zeta3 = atan2(imag(R3),real(R3)); C1 = R3mag*cos(alpha2+zeta3)- R2mag*cos(alpha3+zeta2); C1 = R3mag*cos(alpha2+zeta3)- R2mag*cos(alpha3+zeta2); C2 = R3mag*sin(alpha2+zeta3)- R2mag*sin(alpha3+zeta2); C2 = R3mag*sin(alpha2+zeta3)- R2mag*sin(alpha3+zeta2); C3 = R1mag*cos(alpha3+zeta1)- R3mag*cos(zeta3); C3 = R1mag*cos(alpha3+zeta1)- R3mag*cos(zeta3); C4 =- R1mag*sin(alpha3+zeta1)+R3mag*sin(zeta3); C4 =- R1mag*sin(alpha3+zeta1)+R3mag*sin(zeta3); C5 = R1mag*cos(alpha2+zeta1)- R2mag*cos(zeta2); C5 = R1mag*cos(alpha2+zeta1)- R2mag*cos(zeta2); C6 =- R1mag*sin(alpha2+zeta1)+R2mag*sin(zeta2); C6 =- R1mag*sin(alpha2+zeta1)+R2mag*sin(zeta2); A1 = -C3^2 - C4^2; A1 = -C3^2 - C4^2; A2 = C3*C6 - C4*C5; A2 = C3*C6 - C4*C5; A3 = -C4*C6 - C3*C5; A3 = -C4*C6 - C3*C5; A4 = C2*C3 + C1*C4; A4 = C2*C3 + C1*C4; A5 = C4*C5 - C3*C6; A5 = C4*C5 - C3*C6; A6 = C1*C3 - C2*C4; A6 = C1*C3 - C2*C4; K1 = A2*A4 + A3*A6; K1 = A2*A4 + A3*A6; K2 = A3*A4 + A5*A6; K2 = A3*A4 + A5*A6; K3 = (A1^2-A2^2-A3^2-A4^2-A6^2)/2; K3 = (A1^2-A2^2-A3^2-A4^2-A6^2)/2;

if n == 1 if n == 1 beta3_1 = 2*atan2(K2 + sqrt(K1^2+K2^2-K3^2),K1+K3); beta3_1 = 2*atan2(K2 + sqrt(K1^2+K2^2-K3^2),K1+K3); beta3_2 = 2*atan2(K2 - sqrt(K1^2+K2^2-K3^2),K1+K3); beta3_2 = 2*atan2(K2 - sqrt(K1^2+K2^2-K3^2),K1+K3); beta2_1 = atan2(-(A3*sin(beta3_1)+A2*cos(beta3_1)+A4),... beta2_1 = atan2(-(A3*sin(beta3_1)+A2*cos(beta3_1)+A4),... -(A5*sin(beta3_1)+A3*cos(beta3_1)+A6)); -(A5*sin(beta3_1)+A3*cos(beta3_1)+A6)); beta2_2 = atan2(-(A3*sin(beta3_2)+A2*cos(beta3_2)+A4),... beta2_2 = atan2(-(A3*sin(beta3_2)+A2*cos(beta3_2)+A4),... -(A5*sin(beta3_2)+A3*cos(beta3_2)+A6)); -(A5*sin(beta3_2)+A3*cos(beta3_2)+A6)); if (abs(beta2_1-alpha2) < 10^(-6) && abs(beta3_1-alpha3) < 10^(-6)) if (abs(beta2_1-alpha2) < 10^(-6) && abs(beta3_1-alpha3) < 10^(-6)) beta2 = beta2_2; beta2 = beta2_2; beta3 = beta3_2; beta3 = beta3_2; else else beta2 = beta2_1; beta2 = beta2_1; beta3 = beta3_1; beta3 = beta3_1; end end else else sigma3_1 = 2*atan2(K2 + sqrt(K1^2+K2^2-K3^2),K1+K3); sigma3_1 = 2*atan2(K2 + sqrt(K1^2+K2^2-K3^2),K1+K3); sigma3_2 = 2*atan2(K2 - sqrt(K1^2+K2^2-K3^2),K1+K3); sigma3_2 = 2*atan2(K2 - sqrt(K1^2+K2^2-K3^2),K1+K3); sigma2_1 = atan2(-(A3*sin(sigma3_1)+A2*cos(sigma3_1)+A4),... sigma2_1 = atan2(-(A3*sin(sigma3_1)+A2*cos(sigma3_1)+A4),... -(A5*sin(sigma3_1)+A3*cos(sigma3_1)+A6)); -(A5*sin(sigma3_1)+A3*cos(sigma3_1)+A6)); sigma2_2 = atan2(-(A3*sin(sigma3_2)+A2*cos(sigma3_2)+A4),... sigma2_2 = atan2(-(A3*sin(sigma3_2)+A2*cos(sigma3_2)+A4),... -(A5*sin(sigma3_2)+A3*cos(sigma3_2)+A6)); -(A5*sin(sigma3_2)+A3*cos(sigma3_2)+A6)); if (abs(sigma2_1-alpha2) < 10^(-6) && abs(sigma3_1-alpha3) < 10^(-6)) if (abs(sigma2_1-alpha2) < 10^(-6) && abs(sigma3_1-alpha3) < 10^(-6)) sigma2 = sigma2_2; sigma2 = sigma2_2; sigma3 = sigma3_2; sigma3 = sigma3_2; else else sigma2 = sigma2_1; sigma2 = sigma2_1; sigma3 = sigma3_1; sigma3 = sigma3_1; end end end end

Matlab Code For Synthesis Amat = [(exp(i*beta2) -1), (exp(i*alpha2) -1);(exp(i*beta3) -1), (exp(i*alpha3) -1)]; Amat = [(exp(i*beta2) -1), (exp(i*alpha2) -1);(exp(i*beta3) -1), (exp(i*alpha3) -1)]; Bvec = [delta2;delta3]; Bvec = [delta2;delta3]; X_L = inv(Amat)*Bvec; X_L = inv(Amat)*Bvec; W1 = X_L(1,1); Z1 = X_L(2,1); A = P1-Z1-W1; W1 = X_L(1,1); Z1 = X_L(2,1); A = P1-Z1-W1; Amat = [(exp(i*sigma2) -1), (exp(i*alpha2) -1);(exp(i*sigma3) - 1), (exp(i*alpha3) -1)]; Amat = [(exp(i*sigma2) -1), (exp(i*alpha2) -1);(exp(i*sigma3) - 1), (exp(i*alpha3) -1)]; Bvec = [delta2;delta3]; Bvec = [delta2;delta3]; X_R = inv(Amat)*Bvec; X_R = inv(Amat)*Bvec; U1 = X_R(1,1); S1 = X_R(2,1); A_p = P1-S1-U1; U1 = X_R(1,1); S1 = X_R(2,1); A_p = P1-S1-U1;

Compact Design How did we find the shortest linklengths? Solving the vector equations Confining the four bar path to go through three points We obtained 12 equations and 18 unknowns We were left with 6 free choices Results: Sum of Four-links = m

Animation for the lowest link lengths

Lowest peak Torque How did we find the lowest torque? Using Energy Method The main equation used for torque was Results: Lowest Peak Torque = Nm

Mat lab Code For lowest Peak Torque r1 = abs(A_p-A); r2 = abs(W1); r1 = abs(A_p-A); r2 = abs(W1); r3 = abs(A_p+U1-A-W1); r4 = abs(U1); r3 = abs(A_p+U1-A-W1); r4 = abs(U1); Links =[r1,r2,r3,r4]; Links =[r1,r2,r3,r4]; suml = sum(Links) suml = sum(Links) if (max(Links)+min(Links) <= suml/2) && (suml < 89) if (max(Links)+min(Links) <= suml/2) && (suml < 89) cond = 1 % Grashof cond = 1 % Grashof Mlink(c1,c2) = suml; Mlink(c1,c2) = suml; else cond = 0 % Non Grashof else cond = 0 % Non Grashof Mlink(c1,c2) = 9; Mlink(c1,c2) = 9; end end if cond == 1; if cond == 1; y = 1; y = 1; for th2 =0:.1:(2*pi) for th2 =0:.1:(2*pi) %th2 =atan2(imag(W1),real(W1)); %th2 =atan2(imag(W1),real(W1)); th3 =atan2(imag(A_p+U1-A- W1),real(A_p+U1-A-W1)); th3 =atan2(imag(A_p+U1-A- W1),real(A_p+U1-A-W1)); th4 =atan2(imag(U1),real(U1)); th4 =atan2(imag(U1),real(U1)); V = inv([r3*sin(th3), -r4*sin(th4); - r3*cos(th3), r4*cos(th4)]) * [- r2*sin(th2)*(1); r2*cos(th2)*(1)]; V = inv([r3*sin(th3), -r4*sin(th4); - r3*cos(th3), r4*cos(th4)]) * [- r2*sin(th2)*(1); r2*cos(th2)*(1)]; th2dot = 1; th2dot = 1; th3dot = V(1,1); th3dot = V(1,1); th4dot = V(2,1); th4dot = V(2,1); Acc = inv([r3*sin(th3), -r4*sin(th4); - r3*cos(th3), r4*cos(th4)]) * [r4*cos(th4)*(th4dot)^2, -r2*cos(th2), - r3*cos(th3)*(th3dot)^2; r4*sin(th4)*(th4dot)^2, -r2*sin(th2), - r3*sin(th3)*(th3dot)^2]; Acc = inv([r3*sin(th3), -r4*sin(th4); - r3*cos(th3), r4*cos(th4)]) * [r4*cos(th4)*(th4dot)^2, -r2*cos(th2), - r3*cos(th3)*(th3dot)^2; r4*sin(th4)*(th4dot)^2, -r2*sin(th2), - r3*sin(th3)*(th3dot)^2]; th3ddot = Acc(1,1); th3ddot = Acc(1,1); th4ddot = Acc(2,1); th4ddot = Acc(2,1); m2 = ( ) * (.0001) * r2; m2 = ( ) * (.0001) * r2; m3 = ( ) * (.0001) * r3; m3 = ( ) * (.0001) * r3; m4 = ( ) * (.0001) * r4; m4 = ( ) * (.0001) * r4; I3 = (1/12) * (.0001)*(r3)^3; I3 = (1/12) * (.0001)*(r3)^3; I4 = (1/12) * (.0001)*(r4)^3; I4 = (1/12) * (.0001)*(r4)^3; VxR2 =.5*r2*sin(th2)*th2dot; VxR2 =.5*r2*sin(th2)*th2dot; VxR3 = -r2*sin(th2)*th2dot -.5*r3*sin(th3)*th3dot; VxR3 = -r2*sin(th2)*th2dot -.5*r3*sin(th3)*th3dot; VxR4 = -.5*r4*sin(th4)*th4dot; VxR4 = -.5*r4*sin(th4)*th4dot; VyR2 =.5*r2*cos(th2)*th2dot; VyR2 =.5*r2*cos(th2)*th2dot; VyR3 = r2*cos(th2)*th2dot +.5*r3*cos(th3)*th3dot; VyR3 = r2*cos(th2)*th2dot +.5*r3*cos(th3)*th3dot; VyR4 =.5*r4*cos(th4)*th4dot; VyR4 =.5*r4*cos(th4)*th4dot; AxR2 = -.5*r2*cos(th2)*(th2dot)^2; AxR2 = -.5*r2*cos(th2)*(th2dot)^2; AxR3 = -(r2*cos(th2)*(th2dot)^2) - (.5*r3*cos(th3)*(th3dot)^2 +.5*r3*sin(th3)*(th3ddot)); AxR3 = -(r2*cos(th2)*(th2dot)^2) - (.5*r3*cos(th3)*(th3dot)^2 +.5*r3*sin(th3)*(th3ddot));

AxR4 = -(.5*r4*cos(th4)*th4dot^2 +.5*r4*sin(th4)*th4ddot); AxR4 = -(.5*r4*cos(th4)*th4dot^2 +.5*r4*sin(th4)*th4ddot); AyR2 = -.5*r2*sin(th2)*(th2dot)^2; AyR2 = -.5*r2*sin(th2)*(th2dot)^2; AyR3 = -r2*sin(th2)*(th2dot)^2 -.5*r3*sin(th3)*(th3dot)^2 +.5*r3*cos(th3)*(th3ddot); AyR3 = -r2*sin(th2)*(th2dot)^2 -.5*r3*sin(th3)*(th3dot)^2 +.5*r3*cos(th3)*(th3ddot); AyR4 = -.5*r4*sin(th4)*th4dot^2 +.5*r4*cos(th4)*th4ddot; AyR4 = -.5*r4*sin(th4)*th4dot^2 +.5*r4*cos(th4)*th4ddot; Torque2 = abs((m2*AxR2*VxR2 + m2*VyR2*(AyR2+9.81) + m3*AxR3*VxR3 + m3*VyR3*(AyR3+9.81) + I3*th3ddot*th3dot + m4*AxR4*VxR4 + m4*VyR4*(AyR4+9.81) + I4*th4ddot*th4dot)); Torque2 = abs((m2*AxR2*VxR2 + m2*VyR2*(AyR2+9.81) + m3*AxR3*VxR3 + m3*VyR3*(AyR3+9.81) + I3*th3ddot*th3dot + m4*AxR4*VxR4 + m4*VyR4*(AyR4+9.81) + I4*th4ddot*th4dot)); a(y) = Torque2; a(y) = Torque2; y = y+1; y = y+1; end end a a max(a) max(a) end end

Animation For The Lowest Peak Torque

Lowest Torque Fluctuation How did we get the lowest Torque Fluctuation? Results: Lowest torque fluctuation =

Matlab Code For The Lowest Torque Fluctuation

Animation For The Lowest Torque Fluctuation

Solid Edge For Compact Design

Solid Edge For Lowest Torque

Solid Edge For Lowest Torque Fluctuation

Questions?

The End