ECE410 Spring 2012 Lecture #32 AC Circuits I.

Slides:



Advertisements
Similar presentations
Math Review with Matlab:
Advertisements

Complex Numbers in Engineering (Chapter 5 of Rattan/Klingbeil text)
Each of the circuit elements will have a different ac current response to an applied ac voltage. We need to look at each of these elements. Resistor:
Complex Power – Background Concepts
 A sinusoids is signal that has the form of the sine or cosine function.  Consider the sinusoidal voltage.
Chapter 2: Part 1 Phasors and Complex Numbers
The Basic Elements and Phasors
ECE 3336 Introduction to Circuits & Electronics
We have been using voltage sources that send out a current in a single direction called direct current (dc). Current does not have to flow continuously.
Department of Electronic Engineering BASIC ELECTRONIC ENGINEERING Steady-State Sinusoidal Analysis.
STEADY STATE AC CIRCUIT ANALYSIS
Steady-State Sinusoidal Analysis
Lecture 191 Sinusoids (7.1); Phasors (7.3); Complex Numbers (Appendix) Prof. Phillips April 16, 2003.
R,L, and C Elements and the Impedance Concept
Lesson 18 Phasors & Complex Numbers in AC
ELECTRIC CIRCUIT ANALYSIS - I
ES250: Electrical Science
ECE 2300 Circuit Analysis Dr. Dave Shattuck Associate Professor, ECE Dept. Lecture Set #25 Complex Power W326-D3.
Chapter 25 Nonsinusoidal Waveforms. 2 Waveforms Used in electronics except for sinusoidal Any periodic waveform may be expressed as –Sum of a series of.
AC Waveform and AC Circuit Theory Md Shahabul Alam Dept: EEE.
AC Fundamentals Chapter 15. Introduction 2 Alternating Current 3 Voltages of ac sources alternate in polarity and vary in magnitude Voltages produce.
Kent Bertilsson Muhammad Amir Yousaf. DC and AC Circuit analysis  Circuit analysis is the process of finding the voltages across, and the currents through,
Chapter 5 Steady-State Sinusoidal Analysis. 1. Identify the frequency, angular frequency, peak value, rms value, and phase of a sinusoidal signal. 2.
Complex Numbers, Sinusoidal Sources & Phasors ELEC 308 Elements of Electrical Engineering Dr. Ron Hayne Images Courtesy of Allan Hambley and Prentice-Hall.
Fundamentals of Electric Circuits Chapter 9
ELE130 Electrical Engineering 1 Week 5 Module 3 AC (Alternating Current) Circuits.
Sinusoids & Phasors. A sinusoidal current is usually referred to as alternating current (ac). Circuits driven by sinusoidal current or voltage sources.
The V  I Relationship for a Resistor Let the current through the resistor be a sinusoidal given as Is also sinusoidal with amplitude amplitudeAnd.
Fundamentals of Electric Circuits Chapter 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Lecture 16: Sinusoidal Sources and Phasors Nilsson , App. B ENG17 : Circuits I Spring May 21, 2015.
Study Guide Final. Closed book/Closed notes Bring a calculator or use a mathematical program on your computer The length of the exam is the standard 2.
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 14 The Basic Elements.
Chapter 15 AC Fundamentals.
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 15.1 Alternating Voltages and Currents  Introduction  Voltage and Current.
Lecture 13: Complex Numbers and Sinusoidal Analysis Nilsson & Riedel Appendix B, ENG17 (Sec. 2): Circuits I Spring May 13, 2014.
Lecture 25 Introduction to steady state sinusoidal analysis Overall idea Qualitative example and demonstration System response to complex inputs Complex.
1 ELECTRICAL CIRCUIT ET 201  Define and explain phasors, time and phasor domain, phasor diagram.  Analyze circuit by using phasors and complex numbers.
EE 1270 Introduction to Electric Circuits Suketu Naik 0 EE 1270: Introduction to Electric Circuits Lecture 17: 1) Sinusoidal Source 2) Complex Numbers.
Fundamentals of Electric Circuits Chapter 9
1 ELECTRICAL TECHNOLOGY EET 103/4  Define and explain sine wave, frequency, amplitude, phase angle, complex number  Define, analyze and calculate impedance,
1 ECE 3336 Introduction to Circuits & Electronics Note Set #8 Phasors Spring 2013 TUE&TH 5:30-7:00 pm Dr. Wanda Wosik.
Unit 8 Phasors.
COVERAGE TOPICS 1. AC Fundamentals AC sinusoids AC response (reactance, impedance) Phasors and complex numbers 2. AC Analysis RL, RC, RLC circuit analysis.
Chapter 14 – Basic Elements and Phasors Lecture 17 by Moeen Ghiyas 13/12/
Digital Signal Processing – Chapter 10 Fourier Analysis of Discrete-Time Signals and Systems Dr. Ahmed Samir Fahmy Associate Professor Systems and Biomedical.
COMPLEX NUMBERS and PHASORS. OBJECTIVES  Use a phasor to represent a sine wave.  Illustrate phase relationships of waveforms using phasors.  Explain.
AC Circuit Analysis.
A sinusoidal current source (independent or dependent) produces a current That varies sinusoidally with time.
Lecture 6 (II) COMPLEX NUMBERS and PHASORS. OBJECTIVES A.Use a phasor to represent a sine wave. B.Illustrate phase relationships of waveforms using phasors.
Chapter 15 Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd © 2010 Pearson Higher Education, Upper Saddle River, NJ All Rights.
Chapter 13 The Basic Elements and Phasors. Objectives Be able to add and subtract sinusoidal voltages or currents Use phasor format to add and subtract.
CHAPTER 1: SINUSOIDS AND PHASORS
1 EENG224 Chapter 9 Complex Numbers and Phasors Huseyin Bilgekul EENG224 Circuit Theory II Department of Electrical and Electronic Engineering Eastern.
Chapter 13 The Basic Elements and Phasors. Objectives Be able to add and subtract sinusoidal voltages or currents Use phasor format to add and subtract.
EE301 Phasors, Complex Numbers, And Impedance. Learning Objectives Define a phasor and use phasors to represent sinusoidal voltages and currents Determine.
Lecture 07 AC POWER & POWER FACTOR.
Lesson 1: Phasors and Complex Arithmetic
COMPLEX NUMBERS and PHASORS
LECTURE #3 Complex Exponentials & Complex Numbers
ECE 2202 Circuit Analysis II
Sinusoidal Waveform Phasor Method.
ECE 1270: Introduction to Electric Circuits
ECE 1270: Introduction to Electric Circuits
Electric Circuits Fundamentals
2. 2 The V-I Relationship for a Resistor Let the current through the resistor be a sinusoidal given as Is also sinusoidal with amplitude amplitude.
Chapter 15.
Chapter 9 – Sinusoids and Phasors
Chapter 9 – Sinusoids and Phasors
BLM Circuit Theory Prof. Dr. Nizamettin AYDIN
Presentation transcript:

ECE410 Spring 2012 Lecture #32 AC Circuits I

Homework Due 3/16/2012 Chapter 7 – Problems 33, 35, 48, 50, 55, 70, 73, 74, 78, 89 PSpice – Model the circuit from problem 89 from your homework assignment. This circuit is shown below as well as the input waveform:

Homework (cont) Plot voltage v0 vs. time. Ignore the switch in the circuit and model the input waveform using VPWL, a piecewise linear voltage source. Using this source you can specify the voltage at multiple times (t1,t2,t3,…) and the corresponding voltages at those times (v1, v2, v3, …) and the points will be connected by straight lines. In order to model the vertical transitions use two times that are close together.. (let t1=0, v1=0; t2=1ns, v2=-200mV) to simulate the initial voltage change from 0V to -200mV at time zero. My suggestion: Run the simulation for 750ms Use a LM741 or similar op-amp in your simulation

Midterm Exam #3 Friday April 27th Will Cover Chapters 6, 7 and 9 Capacitance Inductance RC and RL circuits Sinusoidal Steady State Analysis Use 1-3x5 Notecard (both sides) Can bring a calculator and writing utensil Be ready to go at the beginning of the class period

AC Waveforms AC waveforms are sinusoidal and can be described by either a sine or cosine.. We will use the cosine convention. phase Vm = Amplitude ω = angular frequency (equal to 2πf or 2π/T) φ = phase angle

Effect of Phase Angle The phase angle shifts the cosine wave to the right or left in time. Cosine with non-zero phase angle Unshifted cosine Cosine is equal to 1 when the phase is equal to zero. Thus: The wave with phase angle φ with be shifted in time by:

Sine-Cosine Relations The following are useful relationships for AC circuits: Shifting a sine by 90 degrees results in ±cosine Shifting a cosine by 90 degrees results in ±sine

RMS Values AC sinusoids have an average of zero, so we use RMS (root of the mean squared function) to get a measure for effective average value. For sinusoidal signals

RMS calculation for a non-sinusoid Find RMS value for a Square Wave: Let Amplitude = Vmax

Complex Number Review Complex numbers involve numbers with imaginary terms (involving j=sqrt(-1)) They can be expressed in polar form or rectangular form Rectangular x = A+jB Polar Complex numbers can be plotted in the complex plane

Complex Plane Imaginary A complex number is a vector in the complex plane It can be expressed in terms of it’s real and imaginary components… this is the rectangular form: X = A + jB Or it can be expressed in terms of it’s angle to the real axis and it’s length… this is the polar form: B C φ Real A where

Conversion Between Polar and Rectangular Notation Changing from Polar to Rectangular Changing from Rectangular to Polar Given length C and angle φ Given Real component A and imaginary component B

Real and Imaginary Parts The Real Part of a complex number is it’s vector component in real direction The Imaginary Part of a complex number is it’s component in the imaginary direction Imaginary B C φ Real A

Sinusoidal Response What happens if we drive a circuit with capacitance or inductance with a sinusoidal voltage source? Full Solution:

Characteristics of Response The transient solution only lasts for a short time The steady state solution is a sinusoid The steady state sinusoid has the same frequency as the sinusoid used in the driving voltage. The Amplitude and phase angle of the steady state response differ from the driving voltage source Transient Response (dies out with time) Steady State Response

Implications of the Steady State Response The steady state response of a sinusoidal driving voltage is a sinusoid with the same frequency We therefor only need to keep track of the amplitudes and phase angles of the voltages and currents in our circuit. ω is constant in all expressions and can be ignored.

Phasors and Phasor Transform The phasor allows us to simplify dealing with sinusoids by looking at them in the complex domain (also called frequency domain) Euler’s Identity The Phasor Representation or Phasor Transform of a Sinusoidal waveform drops the frequency term and the Real Designation:

Phasor Continued A phasor can be expressed in either polar or rectangular form as we showed earlier when discussing complex numbers People often get tired of writing the exponential form and have developed the following shorthand:

Inverse Phasor Transform The inverse phasor transfrom converts a phasor back into a sinusoidal voltage waveform. Note that there is nothing in the phasor itself that allows you to know what ω is. It must be independently known for your circuit

Usefulness of the Phasor The phasor transform is useful because it applies directly to the sum of sinusoidal voltages. If we have a sum of sinusoidal voltages: We can also represent it as a sum of phasors:

Adding Sinusoids with and without phasor Try adding Try with trig identities to express this as a single sinusoid Try doing the same with phasors I will work through both on the board Hint… phasors are a LOT easier Remember our expressions from our complex number review:

Hints for using phasors Phasors are easiest to add in rectangular form When adding (and subtracting) phasors… convert them all to rectangular format first, it will save you time Phasor are easiest to multiply and divide in polar form When converting from a phasor to a sinusoid through the inverse phasor transform, always make sure the phasor is in polar form Remember, as annoying as it might be to convert back and forth from polar to rectangular form, it is much easier than trying to directly deal with the sinusoidal expression

Sample Problems Find the phasor transform of the following: Find the time-domain expression for the following: