x y z Medidas do prisma: 2X2X4 A B CD EF G H A(,, ) B(,, ) C(,, ) D(,, ) E(,, ) F(,, ) G(,, ) H(,, ) Determinar as coordenadas do vértices do prisma.

Slides:



Advertisements
Similar presentations
Digital Image Processing, 2nd ed. © 2002 R. C. Gonzalez & R. E. Woods Chapter 11 Representation & Description Chapter 11 Representation.
Advertisements

Holy Spirit Love Don’t pass me by.. x4
Volume of Revolution, Shell Method
An Introduction to Calculus. Calculus Study of how things change Allows us to model real-life situations very accurately.
Methodological questions in human- computer interaction looking for ways to analyse referenciation between people and chatterbots Centro Federal de Educação.
robot con 6 gradi di mobilità
S-shaped growth Flowers. dA / dt = r * A * (K-A) / K If A
EOG Vocabulary Week of March 28, 2011 Math Words: Fractions and Properties.
Suggested Activities Unit 1: Unraveling the Problem- Solving Process.
Open the Eyes of My Heart
Let God Arise. Hear the holy roar of God resound Watch the waters part before us now Come and see what He has done for us Tell the world of His great.
Jesus, All For Jesus.
I Sing Praises to Your Name
Give Thanks.
The Derivative in Graphing and Application
Everyday Multiplication Everyday Multiplication Created By: Group 1.
Chances Are… You can do it! Activity #5 Five baseball players threw their caps into a sports bag after a ball game. What is the probability that each.
Maximal Independent Subsets of Linear Spaces. Whats a linear space? Given a set of points V a set of lines where a line is a k-set of points each pair.
Markov models and HMMs. Probabilistic Inference P(X,H,E) P(X|E=e) = P(X,E=e) / P(E=e) with P(X,E=e) = sum h P(X, H=h, E=e) P(X,E=e) = sum h,x P(X=x, H=h,
View from BEHIND backplate Notch View from BEHIND backplate 2x5 and 5x2 partial SCs SC assembly jig views.
(a + b) 2 = a 2 + 2ab + b 2 a a a2a2 b ab b2b2 b b b a a a + b (a + b ) 2 = a2a2 +ab +b 2 = a 2 + 2ab + b 2.
Parentheses- (), {}, [] Exponent- 2³ Multiply or Divide- which ever come first Add or subtract- which ever comes first.
Factoring Trinomials NEXT. Problem 1 Product: x 2 + 6x + 8 Step 1: Place the x 2 model in the upper-left region. NEXT.
God Alone.com Advocating the worship of God Alone.
Event Management Scheduling.
Inverting a Singly Linked List Instructor : Prof. Jyh-Shing Roger Jang Designer : Shao-Huan Wang The ideas are reference to the textbook “Fundamentals.
Logarithmic Equations
Factoring Polynomials to Find Roots. Factoring a Polynomial to Find Roots Factor 3x x x x – 24 and find all of the roots. Roots: Factors:
4.1 Introduction to Matrices
2 x0 0 12/13/2014 Know Your Facts!. 2 x1 2 12/13/2014 Know Your Facts!
2 x /18/2014 Know Your Facts!. 11 x /18/2014 Know Your Facts!
2 x /10/2015 Know Your Facts!. 8 x /10/2015 Know Your Facts!
2.4 – Factoring Polynomials Tricky Trinomials The Tabletop Method.
All Rights Reserved © Alcatel-Lucent 2006, ##### 1 | Presentation Title | Month 2006 Router A Router B OSPF Hdr: Session ID = X1; Nonce = N1 OSPF HELLO:
1 Lecture 5 PRAM Algorithm: Parallel Prefix Parallel Computing Fall 2008.
5 x4. 10 x2 9 x3 10 x9 10 x4 10 x8 9 x2 9 x4.
Linear Programming – Simplex Method: Computational Problems Breaking Ties in Selection of Non-Basic Variable – if tie for non-basic variable with largest.
The Problem of K Maximum Sums and its VLSI Implementation Sung Eun Bae, Tadao Takaoka University of Canterbury Christchurch New Zealand.
Computational Facility Layout
(1) MAX X1+3X2+2X3+4X4 X1=AM PHONE, X2=AM RIDE, X3=AFT PHONE, X4=AFT RIDE CONSTRAINTS AM: X1+20X2 < 12(60)=720 AFT: 2X3+30X4 < 14(60) = 840 GAS: X2+X4.
0 x x2 0 0 x1 0 0 x3 0 1 x7 7 2 x0 0 9 x0 0.
Simplex (quick recap). Replace all the inequality constraints by equalities, using slack variables.
Template Implicit function overload. Function overload Function overload double ssqq(double & a, double & b) { return(a*b);} float ssqq(float & a, float.
7x7=.
A B Q Chord AB is 18. The radius of Circle Q is 15. How far is chord AB from the center of the circle? 9 15 (family!) 12 x.
C h e m i c a l R e a c t i o n s. C h e m i c a l R e a c t i o n A p r o c e s s i n w h i c h o n e s u b s t a n c e i s c h a n g e d i n t o a n.
M5 - 09/02/2012 M4 - 09/02/ V ; 0.010nA. M8 - 09/02/2012 M9 - 09/02/ V ; 0.15nA1.8V ; 0.21nA.
A) 80 b) 53 c) 13 d) x 2 = : 10 = 3, x 3 = 309.
1 Classe Graphics Alcides Calsavara. 2 Uso com Applets u parâmetro do método paint –public void paint ( Graphics g ) u utilizado como base para o desenho.
TRANSITIVE PROPERTY of CONGRUENCE and EQUALITY GEO125 TRANSITIVE PROPERTY of EQUALITY: if a = b and b = c, then a = c. If = 9 and = 9, then.
CHAPTER 13.2 DAY 1. Warm up  How are the measures of two vertical angles related?  What is the measurement of angle x  The measures of two vertical.
1.8 Midpoint & Distance Formula in the Coordinate Plane Objective: Develop and apply the formula for midpoint. Use the Distance Formula and the Pythagorean.
Midpoint and Distance Formulas
CHAPTER 1 SECTION 5.
¿QUIERO QUE SE DESPLACE?
1.4 Sketching Intersections
6.2 Properties of Parallelograms
Combinations COURSE 3 LESSON 11-3
Midpoint and Distance in the Coordinate Plane
بسم الله الرحمن الرحیم.
الوسائل التعليمية الجمعة 14 آذار 2014 إعداد : هيثم شعيب.
המרכז הפדגוגי לעובדי הוראה, ירושלים, אילנה זהר ©
Compute the colour at point G – Guraud Shading
Construct a segment AB and CD
KNOCKOUT.
AB AC AD AE AF 5 ways If you used AB, then, there would be 4 remaining ODD vertices (C, D, E and F) CD CE CF 3 ways If you used CD, then, there.
Cónicas. CIRCUNFERENCIA El plano de corte es perpendicular al eje de cono ELIPSE El ángulo del plano con el eje es mayor que el ángulo de generación.
Cónicas. CIRCUNFERENCIA El plano de corte es perpendicular al eje de cono ELIPSE El ángulo del plano con el eje es mayor que el ángulo de generación.
KNOCKOUT.
Жаңа ақпараттық оқыту технологиясы
Presentation transcript:

x y z Medidas do prisma: 2X2X4 A B CD EF G H A(,, ) B(,, ) C(,, ) D(,, ) E(,, ) F(,, ) G(,, ) H(,, ) Determinar as coordenadas do vértices do prisma

A(,, ) B(,, ) C(,, ) D(,, ) E(,, ) F(,, ) G(,, ) H(,, ) Determinar as coordenadas do vértices do prisma x y z Medidas do paralelipípedo: 2X2X4 A B CD EF G H

A(,, ) B(,, ) C(,, ) D(,, ) E(,, ) F(,, ) G(,, ) H(,, ) Determinar as coordenadas do vértices do prisma x y z Medidas do prisma: 2X2X4 A B CD EF G H

A(,, ) B(,, ) C(,, ) D(,, ) E(,, ) F(,, ) G(,, ) H(,, ) Determinar as coordenadas do vértices do prisma x y z Medidas do prisma: 2X2X4 A B CD EF G H

A(,, ) B(,, ) C(,, ) D(,, ) E(,, ) F(,, ) G(,, ) H(,, ) Determinar as coordenadas do vértices do prisma x y z Medidas do prisma: 2X2X4 A B CD EF G H

A(,, ) B(,, ) C(,, ) D(,, ) E(,, ) F(,, ) G(,, ) H(,, ) Determinar as coordenadas do vértices do prisma x y z Medidas do prisma: 2X2X4 A B CD EF G H

A(,, ) B(,, ) C(,, ) D(,, ) E(,, ) F(,, ) G(,, ) H(,, ) Determinar as coordenadas do vértices do prisma x y z Medidas do prisma: 2X2X4 A B CD EF G H

A(,, ) B(,, ) C(,, ) D(,, ) E(,, ) F(,, ) G(,, ) H(,, ) Determinar as coordenadas do vértices do prisma x y z Medidas do prisma: 2X2X4 A B CD EF G H

A(,, ) B(,, ) C(,, ) D(,, ) E(,, ) F(,, ) G(,, ) H(,, ) Determinar as coordenadas do vértices do prisma x y z Medidas do prisma: 2X2X4 A B CD EF G H Centro da base do prisma na origem do referencial

A(,, ) B(,, ) C(,, ) D(,, ) E(,, ) F(,, ) G(,, ) H(,, ) Determinar as coordenadas do vértices do prisma x y z Medidas do prisma: 2X2X4 A B CD EF G H Centro da base superior do prisma na origem do referencial

A(,, ) B(,, ) C(,, ) D(,, ) E(,, ) F(,, ) G(,, ) H(,, ) Determinar as coordenadas do vértices do prisma x y z Medidas do prisma: 2X2X4 A B CD EF G H Centro do prisma na origem do referencial