Development of a High-Energy Seed for Contrast Improvement of the Vulcan Laser Facility. Ian Musgrave, W. Shaikh, M. Galimberti, A. Boyle, K Lancaster,

Slides:



Advertisements
Similar presentations
1 Journées Scientifiques de lEDOM March 8, fs laser chain based on optical parametric chirped pulse amplification Lourdes Patricia Ramirez Equipe.
Advertisements

Proposer and coordinator Ist. di Fisica Applicata Carrara IFAC-CNR, Firenze Project Coordinator : Dr. Matteo Vannini Design and development of Ce:LiCAF.
TU Darmstadt Inertial Confinement Fusion Dieter H.H. Hoffmann TU / GSI Darmstadt 300. WE-Heraeus Seminar ENERGIEFORSCHUNG Mai 2003.
Vulcan Front End OPCPA System
Rutherford Appleton Laboratory Three mechanisms interact to cause ion acceleration in PW laser interactions Relativistic electrons expelled by the ponderomotive.
Central Laser Facility
Target Test Diagnostics Richard Brownsword Engineering, Rutherford Appleton Laboratory.
1 LOA-ENSTA. 2 3 For PW class laser, a contrast better than is required I ASE has to be < W/cm² The ASE intensity is enough to generate.
Petawatt Field Synthesizer
New hardware and setups New short pulse regime Experimental results TW power Future plans on laser development ATF CO 2 LASER progress Vitaly Yakimenko.
A Scalable Design for a High Energy, High Repetition Rate, Diode-Pumped Solid State Laser (DPSSL) Amplifier Paul Mason, Klaus Ertel, Saumyabrata Banerjee,
Strecher, compressor and time structure manipulation
High energy, high repetition rate pump laser system for OPCPAs A.-L. Calendron 1,2,3, L. E. Zapata 1,4, H. Çankaya 1,2, H. Lin 4 and F. X. Kärtner 1,2,3,4.
CTF3 Laser Status Massimo Petrarca CLIC January
Pump Probe Measurements of Femto-second Pulses By David Baxter.
Large Multilayer Diffraction Gratings: Coating Uniformity Senior Student: Erik Krous Project Advisor: Dr. Carmen Menoni Collaborators: Dr. D. Patel, Dr.
Lecture 38 Lasers Final Exam next week. LASER L ight A mplification by S timulated E mission of R adiation.
J. Fils for the PHELIX team GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany Sept Speyer EMMI Workshop The PHELIX High Energy.
Bill White Drive Laser April 16, Drive Laser Commissioning Experience Reminder of requirements on Drive Laser.
Prof. Dr. Dr. h. c. R. Sauerbrey | Scientific Director | The HZDR Program towards a Helmholtz beamline at XFEL Roland Sauerbrey Helmholtz-Zentrum.
Compton Linac for Polarized Positrons V. Yakimenko, I. Pogorelsky, M. Polyanskiy, M. Fedurin BNL CERN, October 15, 2009.
30. Nov I.Will, G. Klemz, Max Born Institute: Optical sampling system Optical sampling system for detailed measurement of the longitudinal pulse.
R & D for particle accelerators in the CLF Peter A Norreys Central Laser Facility STFC Fellow Visiting Professor, Imperial College London.
Picosecond fiber laser for thin film micro-processing
High power ultrafast fiber amplifiers Yoann Zaouter, E. Cormier CELIA, UMR 5107 CNRS - Université de Bordeaux 1, France Stephane Gueguen, C. Hönninger,
Extracting During Pumping Ti: Sapphire Amplifiers for ELI Vladimir Chvykov 1, Mikhail Kalashnikov 1,2, Karoly Osvay 1 1 ELI-Hu Nkft., Dugonics ter 13,
Second ELI Nuclear Physics Workshop Bucharest – Magurele, 1-2 February 2010 ULTRASHORT PULSE, HIGH INTENSITY LASERS Dan C. Dumitras, Razvan Dabu Department.
DS3-DS4 Joint 1 st Task Meeting, Saclay 16 th -17 th May 2005 Matter under extremes conditions Femtosecond Laser Servers Laboratoire Francis Perrin SPAM.
Palaiseau - FRANCE Spatio-Temporal Chirped Pulse Amplification for Avoiding Spectral Modifications in Ultra-Short Petawatt Lasers C. Radier1,2, F. Giambruno1,3,
A 5 fs high average power OPCPA laser system for attosecond pulse production Philip Bates, Yunxin Tang, Emma Springate and Ian Ross Central Laser Facility,
Diode Pumped Cryogenic High Energy Yb-Doped Ceramic YAG Amplifier for Ultra-High Intensity Applications P. D. Mason, S. Banerjee, K. Ertel, P. J. Phillips,
CTF3 photo injector laser status CERN 17 July 2009 CLIC meeting.
30 Nov. 06 I.Will et al., Max Born Institute: Long trains of flat-top laser pulses Photocathode lasers generating long trains of flat-top pulses Ingo Will,
Folienvorlagen für Seminarvortrag. Novel laser concepts HR-mirror out coupling mirror disc cooling diode laser focusing optic diode laser focusing optic.
Laser Source for the  -  Collider Jim Early Lawrence Livermore National Lab Laser Science and Technology SPLAT Short Pulse Lasers, Applications & Technology.
Cryogenic Gas Cooling of High Energy Lasers Paul Mason HEPTech – Cryogenics Meeting, Grenoble, France 4-5 th June 2015 STFC Rutherford.
About the possibility to build a 10-PW femtosecond laser for ELI-NP till 2015 Razvan Dabu National Institute for Lasers, Plasma and Radiation Physics Bucharest.
Development of High-efficiency Yb:YAG Regenerative Amplifier for Industry Isao Matsushima 1, Kazuyuki Akagawa² 1. National Institute of Advanced Industrial.
Advancement in photo-injector laser: Second Amplifier & Harmonic Generation M. Petrarca CERN M. Martyanov, G. Luchinin, V. Lozhkarev Institute of Applied.
Optical Amplifiers By: Ryan Galloway.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Phto-injector laser chain NEWS Massimo Petrarca & Marta Divall.
Laser System Upgrade Overview
Short pulse oscillator
Extreme Light Infrastructure in Romania: progress Daniel URSESCU Technical contact point for ELI in Romania INFLPR, Magurele, Romania.
Workshop for advanced THz and Compton X-ray generation
An H- stripping laser using commercial, diode-pumped Nd:YAG amplifiers Russell Wilcox Laser Stripping Workshop, April 11, 2011.
Diode-Pumped Solid-State Amplifiers September 27 th, 2013 Jay Doster, Ryan Feeler, Faming Xu 3 rd mini-Workshop on H- Laser Stripping and Accelerator Applications.
Nd:YAG Solid Laser Xiangyu Zhou 20. Nov Yb fiber laser system on the ground Menlo 1030nm oscillator Grating stretcher (Transmission) SOA pulse.
Laser upgrade for NML Jinhao Ruan. Current A0 IR table layout 48’ 96’ OLD MP 10’ 7’ 13’ 3’ 12’ 6’ NEW MP 10’ F F F stands for Flipper mirror, PP stands.
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of the noncollinear optical parametric amplification (NOPA) geometry.
Date of download: 9/18/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the OPCPA laser system at Sandia National Laboratories. A stretched.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Mid-IR lasers for energy frontier plasma accelerators Igor Pogorelsky Mikhail Polyanskiy (BNL ATF) Marcus Babzien (BNL ATF) Wei Lu (Tsinghua Univ.) Wayne.
Status of the SPARC laser and “dazzler” experiments
Outline ATF’s Terawatt CO2 laser overview BESTIA concept (as presented at AAC ’14) Progress since AAC ’14 Current vision of the roadmap to 100 TW.
LASER SAFETY External EHS Expert Panel Workshop
Laser System Upgrade Overview
V. Bagnoud PHELIX, Plasma Physics department GSI Darmstadt
High power high energy ultrafast fiber amplifiers
Diode Pumped Cryogenic High Energy Yb-Doped Ceramic YAG Amplifier for Ultra-High Intensity Applications P. D. Mason, S. Banerjee, K. Ertel, P. J. Phillips,
Nd:YAG Solid Laser 3-2 / A-1 on the ground
Two color FEL experiment
Business Development Manager, Bucarest 2011
Principle of Mode Locking
Kansas Light Source Upgrade
Short focal length target area: X-ray & ion sources and applications
Kansas Light Source Laser System J. R. Macdonald Laboratory
LCLS Injector Laser System Paul R. Bolton, SLAC April 24, 2002
Optical-phase conjugation in difference-frequency generation
Presentation transcript:

Development of a High-Energy Seed for Contrast Improvement of the Vulcan Laser Facility. Ian Musgrave, W. Shaikh, M. Galimberti, A. Boyle, K Lancaster, C. Hernandez-Gomez, R. Heathcote. Central Laser Facility, STFC, Rutherford Appleton Laboratory, UK

The Vulcan laser Facility Nd Glass Laser 8 Beam CPA Laser 3 Target Areas 3 kJ Energy 1 PW Power

Vulcan Petawatt PC F Ti:S BBO Pump Stretcher F F Compressor x3 208mm Nova disc amplifiers 16mm Phosphate rod 25mm phosphate rod 45mm Phosphate rod Adaptive optic Double pass 108mm phosphate disc 150mm disc Beam diagnostics Beam diagnostics+ wavefront sensor Interaction chamber 9mm silicate rodDouble pass 16mm silicate rod F Single stretch to 4.5ns Combination of OPCPA and mixed glass amplifiers for amplification

Existing PW facility ASE contrast Previously used photo-diodes to investigate the ASE contrast of the Vulcan PW facility gave a baseline of ~10 8 for the ns ASE. These have shown that the ASE is seeded by the pump pulse of the OPCPA, used NF apertures to limit fluorescence.

Introduce High Energy Seed Introduce a single stage of amplification before main stretch. Reduce the amount of nanosecond gain. Use PS OPCPA Limited ASE window Double reflections won’t be amplified Requires optically synchronised pump beam No recompression or cleaning

Single stage PS OPCPA Ti:Sapphire Seed Regenerative Amplifier 22 BBO Pulse Length Control Timing Control Common seed for signal and pump pulses-optically synchronised Gain Narrowing in Nd:YLF amplifier increases pulses to ~10ps Stretcher in signal beam enables pulse length matching 500  J  1mm 15mm

PS OPCPA Performance Demonstrated full amplification of seed laser at > 20nm SSG~10 6 at peak of pump 120 μ J for <1nJ input ~ 40% conversion of pump to signal and idler Operates in a saturated regime Measured RMS pulse to pulse stability ~1%

High and Low Energy Seed operation of the ns OPCPA OutputSSG Input 10mJ <1nJ 15mJ ~20 μJ

ASE contrast Measurements Relayed a beam out of the interaction chamber Used single-shot AC to confirm compression Optics limit the energy to just the rod amplifier chain

Ns Contrast Measurements Used a combination of a water cell and diodes to obtain a dynamic range of ~10 10 Scattering from collimating optic used as timing marker.

Pick Off beam at injection to rod chain Relay and expand beam before injecting into the TAP compressor Contrast Measurement of the CPA and OPCPA systems

Sequoia Measurements Using same beam line as the diode traces Running both OPCPAs but no rods or disks

Fluorescence from the Pump FT of Clipped spectrum in stretcher gives steep gradient for contrast Pump pulse varies in time. SSG and therefore the PF will vary with the pump pulse intensity

CPA beam Long pulse RCF stack Reflected energy monitor Optical probe 2x HOPG 2-D K  imaging X-ray multi- pinhole camera Same energy on target in all cases First Experimental Data Courtesy of P.McKenna

Conclusions Original ASE Contrast New ASE Contrast Demonstrated a ps OPCPA that has improved the ns ASE contrast by at least 2 orders of magnitude. Characterised the close in contrast. Successfully delivered for user experiments