CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

Algebra II By.
Bellwork If you roll a die, what is the probability that you roll a 2 or an odd number? P(2 or odd) 2. Is this an example of mutually exclusive, overlapping,
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
0 - 0.
ALGEBRAIC EXPRESSIONS
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
BAI CM20144 Applications I: Mathematics for Applications Mark Wood
Extensible Networking Platform CSE 240 – Logic and Discrete Mathematics Review: Mathematical Induction Use induction to prove that the sum of the.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
O X Click on Number next to person for a question.
© S Haughton more than 3?
5.9 + = 10 a)3.6 b)4.1 c)5.3 Question 1: Good Answer!! Well Done!! = 10 Question 1:
Past Tense Probe. Past Tense Probe Past Tense Probe – Practice 1.
Solving Absolute Value Equations Solving Absolute Value Equations
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
Addition 1’s to 20.
25 seconds left…...
Test B, 100 Subtraction Facts
Methods of Proofs October 20, A Good Proof State your plan Avoid excessive symbols Simplify as much as possible Good notation 2.
11 = This is the fact family. You say: 8+3=11 and 3+8=11
Week 1.
Bottoms Up Factoring. Start with the X-box 3-9 Product Sum
O X Click on Number next to person for a question.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
Prof. Shachar Lovett Clicker frequency: CA CSE 20 Discrete math Prof. Shachar Lovett
We want to prove the above statement by mathematical Induction for all natural numbers (n=1,2,3,…) Next SlideSlide 1.
CSE 20 DISCRETE MATH Prof. Shachar Lovett Clicker frequency: CA.
CSE 20 DISCRETE MATH Prof. Shachar Lovett Clicker frequency: CA.
Prof. Shachar Lovett Clicker frequency: CA CSE 20 Discrete math Prof. Shachar Lovett
CSE 20 DISCRETE MATH Prof. Shachar Lovett Clicker frequency: CA.
CSE 105 Theory of Computation Alexander Tsiatas Spring 2012 Theory of Computation Lecture Slides by Alexander Tsiatas is licensed under a Creative Commons.
THE PUMPING LEMMA PROVING A LANGUAGE IS NOT REGULAR Dr. Cynthia Lee - UCSD - Spring 2011 Theory of Computation Peer Instruction Lecture Slides by Dr. Cynthia.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CSE 20: Discrete Mathematics for Computer Science Prof. Shachar Lovett.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CSE 20: Discrete Mathematics for Computer Science Prof. Shachar Lovett.
CSE 20: Discrete Mathematics for Computer Science Prof. Shachar Lovett.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CSE 20: Discrete Mathematics for Computer Science Prof. Shachar Lovett.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CSE 20: Discrete Mathematics for Computer Science Prof. Shachar Lovett.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CSE 20: Discrete Mathematics for Computer Science Prof. Shachar Lovett.
Section 1.7. Definitions A theorem is a statement that can be shown to be true using: definitions other theorems axioms (statements which are given as.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
CS106X – Programming Abstractions in C++ Cynthia Bailey Lee CS2 in C++ Peer Instruction Materials by Cynthia Bailey Lee is licensed under a Creative Commons.
CSE 20: Discrete Mathematics for Computer Science Prof. Shachar Lovett
5.6 Indirect Proof and Inequalities in Two Triangles
CSE 20 – Discrete Mathematics
CSE 20: Discrete Mathematics for Computer Science Prof. Shachar Lovett
CSE 20: Discrete Mathematics for Computer Science Prof. Shachar Lovett
Class Greeting.
CSE 20: Discrete Mathematics for Computer Science Prof. Shachar Lovett
Chapter 5 Parallel Lines and Related Figures
Given: the cost of two items is more than $50.
Presentation transcript:

CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. Based on a work at Permissions beyond the scope of this license may be available at LeeCreative Commons Attribution- NonCommercial-ShareAlike 4.0 International Licensehttp://peerinstruction4cs.org

Today’s Topics: 1. Knights and Knaves 2. Review of Proof by Contradiction 2

1. Knights and Knaves 3

Knights and Knaves  Knights and Knaves scenarios are somewhat fanciful ways of formulating logic problems  Knight: everything a knight says is true  Knave: everything a knave says is false 4

You approach two people, you know the one on the left is a knave, but you don’t know whether the one on the right is a knave or a knight.  Left: “Everything she says is true.”  Right: “Everything I say is true.”  What is she (the one on the right)? A. Knight B. Knave C. Could be either/not enough information D. Cannot be either/situation is contradictory 5

You approach one person, but you don’t know whether he is a knave or a knight.  Mystery person: “Everything I say is true.”  What is he? A. Knight B. Knave C. Could be either/not enough information D. Cannot be either/situation is contradictory 6

You approach one person, but you don’t know whether she is a knave or a knight.  Mystery person: “Everything I say is false.”  What is she? A. Knight B. Knave C. Could be either/not enough information D. Cannot be either/situation is contradictory 7

You meet 3 people: A: “At least one of us is a knave.” B: “At most two of us are knaves.” [C doesn't say anything]  This is a really tricky one, but take a moment to see if you can determine which of the following is a possible solution: A. A: Knave, B: Knave, C: Knave B. A: Knight, B: Knight, C: Knight C. A: Knight, B: Knight, C: Knave (Suggestion: eliminate wrong choices rather than trying to solve the puzzle directly. In your groups: please discuss logic for eliminating choices.) 8

2. Proof by Contradiction 9

Proof by Contradiction Steps  What are they? A. 1. Assume what you are proving, 2. plug in definitions, 3. do some work, 4. show the opposite of what you are proving (a contradiction). B. 1. Assume the opposite of what you are proving, 2. plug in definitions, 3. do some work, 4. show the opposite of your assumption (a contradiction). C. 1. Assume the opposite of what you are proving, 2. plug in definitions, 3. do some work, 4. show the opposite of some fact you already showed (a contradiction). D. Other/none/more than one. 10

You meet 3 people: A: “At least one of us is a knave.” B: “At most two of us are knaves.” [C doesn't say anything]  A: Knight, B: Knight, C: Knave  Zeroing in on just one of the three parts of the solution, we will prove by contradiction that A is a knight. 11

A: “At least one of us is a knave.” B: “At most two of us are knaves.” [C doesn't say anything] Thm. A is a knight. Proof (by contradiction): Assume not, that is, assume A is a knave. Try it yourself first! 12

A: “At least one of us is a knave.” B: “At most two of us are knaves.” [C doesn't say anything] Thm. A is a knight. Proof (by contradiction): Assume not, that is, assume A is a knave. Then what A says is false. Then it is false that at least one is a knave, meaning zero are knaves. So A is not a knave, but we assumed A was a knave, a contradiction. So the assumption is false and the theorem is true. QED. 13

You meet 3 people: A: “At least one of us is a knave.” B: “At most two of us are knaves.” [C doesn't say anything]  A: Knight, B: Knight, C: Knave  Zeroing in on the second of the three parts of the solution, we will prove by contradiction that B is a knight. 14

A: “At least one of us is a knave.” B: “At most two of us are knaves.” [C doesn't say anything] Thm. B is a knight. Proof (by contradiction): Assume not, that is, assume B is a knave. Try it yourself first! 15

A: “At least one of us is a knave.” B: “At most two of us are knaves.” [C doesn't say anything] Thm. B is a knight. Proof (by contradiction): Assume not, that is, assume B is a knave. Then what B says is false, so it is false that at most two are knaves. So it must be that all three are knaves. Then A is a knave. So what A says is false, and so there are zero knaves. So B must be a knight, but we assumed B was a knave, a contradiction. So the assumption is false and the theorem is true. QED. 16

A: “At least one of us is a knave.” B: “At most two of us are knaves.” [C doesn't say anything] Thm. B is a knight. Proof (by contradiction): Assume not, that is, assume B is a knave. Then what B says is false, so it is false that at most two are knaves. So it must be that all three are knaves. Then A is a knave. So what A says is false, and so there are zero knaves. But all three are knaves and zero are knaves is a contradiction. So B must be a knight, but we assumed B was a knave, a contradiction. So the assumption is false and the theorem is true. QED. 17 We didn’t need this step because we had already reached a contradiction.