Consistent analysis of nuclear level structures and nucleon interaction data of Sn isotopes J.Y. Lee 1*, E. Sh. Soukhovitskii 2, Y. D. Kim 1, R. Capote.

Slides:



Advertisements
Similar presentations
Matter takes up space and has mass Everything composed of matter Any biological process, function or structure can be broken down to its chemical level.
Advertisements

Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Mass Unified atomic mass unit u based on 12 C. Replaced both physical.
Basic Nuclear Properties
The Antiproton-Ion Collider EC, 500 KV NESR R. Krücken Technische Universität München for the Antiproton Ion Collider Collaboration.
Modern Theory of Nuclear Structure, Exotic Excitations and Neutrino-Nucleus Reactions N. Paar Physics Department Faculty of Science University of Zagreb.
Robert Michaels PREX at Trento PREX Workshop 09 Physics Interpretation of PREX 208 Pb E = 1 GeV, electrons on lead Elastic Scattering Parity Violating.
BigBite K.Egiyan Probabilities of SRC in Nuclei Measured with A(e,e / ) Reactions K. Egiyan (Yerevan Physics Institute, Yerevan, Armenia and Jefferson.
Break Time Remaining 10:00.
Cluster states around 16 O studied with the shell model Yutaka Utsuno Advanced Science Research Center, Japan Atomic energy Agency ―Collaborator― S. Chiba.
Shell model description of 0 and 1 ħω states in neutron-rich N = 18 and 19 nuclei with Z = 14 to 19 M. BOUHELAL (1), F. HAAS (2), E. CAURIER (2), F. NOWACKI.
Ab Initio Calculations of Three and Four Body Dynamics M. Tomaselli a,b Th. Kühl a, D. Ursescu a a Gesellschaft für Schwerionenforschung, D Darmstadt,Germany.
Collective properties of even- even nuclei Vibrators and rotors With three Appendices.
Coulomb excitation with radioactive ion beams
University of Liverpool
Systematic study of the many- particle and many-hole states in and around the Island of Inversion - #N=Odd system - M. Kimura(Hokkaido)
The Collective Model Aard Keimpema.
John Daoutidis October 5 th 2009 Technical University Munich Title Continuum Relativistic Random Phase Approximation in Spherical Nuclei.
NPSC-2003Gabriela Popa Microscopic interpretation of the excited K  = 0 +, 2 + bands of deformed nuclei Gabriela Popa Rochester Institute of Technology.
NUCLEAR STRUCTURE PHENOMENOLOGICAL MODELS
The Shell Model of the Nucleus 5. Nuclear moments
Dinuclear system model in nuclear structure and reactions.
1 CN formation cross section in nucleon induced reactions on 238 U Efrem Soukhovitski, JINER Frank Dietrich, LLNL Harm Wienke, Belgonucleaire Roberto Capote,
Coupled-Channel Computation of Direct Neutron Capture and (d,p) reactions on Non- Spherical Nuclei Goran Arbanas (ORNL) Ian J. Thompson (LLNL) with Filomena.
NUCLEAR CHEMISTRY QUIZ.
NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France.
1 Roberto Capote, IAEA Nuclear Data Section Web: 14 th Int. Conference.
Shape phase transition in neutron-rich even-even light nuclei with Z=20-28 H.B.Bai X.W.Li H.F.Dong W.C.Cao Department of Physics, Chifeng University, Chifeng.
原子核配对壳模型的相关研究 Yanan Luo( 罗延安 ), Lei Li( 李磊 ) School of Physics, Nankai University, Tianjin Yu Zhang( 张宇 ), Feng Pan( 潘峰 ) Department of Physics, Liaoning.
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Nuclear deformation in deep inelastic collisions of U + U.
Wolfram KORTEN 1 Euroschool Leuven – September 2009 Coulomb excitation with radioactive ion beams Motivation and introduction Theoretical aspects of Coulomb.
Nuclear Models Nuclear force is not yet fully understood.
BNU The study of dynamical effects of isospin on reactions of p Sn Li Ou and Zhuxia Li (China Institute of Atomic Energy, Beijing )
1 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna,
How do nuclei rotate? The nucleus rotates as a whole.
Symmetries and collective Nuclear excitations PRESENT AND FUTURE EXOTICS IN NUCLEAR PHYSICS In honor of Geirr Sletten at his 70 th birthday Stefan Frauendorf,
Petrică Buganu, and Radu Budaca IFIN-HH, Bucharest – Magurele, Romania International Workshop “Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects”
E. Sahin, G. de Angelis Breaking of the Isospin Symmetry and CED in the A  70 mass region: the T z =-1 70 Kr.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Shell model Notes: 1. The shell model is most useful when applied to closed-shell.
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1 Extreme independent particle model!!! Does the core really remain inert?
Study on ν-A Reaction Cross Sections within CRPA Jeong-Yeon LEE and Yeong-Duk KIM Sejong University, KOREA.
Collective model Vibrational States Average shape Instantaneous shape
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
PROPERTIES OF HIGH-ENERGY ISOSCALAR MONOPOLE EXCITATIONS IN MEDIUM-HEAVY MASS SPHERICAL NUCLEI M. L. Gorelik 1), S. Shlomo 2), B. A. Tulupov 3), M. H.
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
g-ray spectroscopy of the sd-shell hypernuclei
Congresso del Dipartimento di Fisica Highlights in Physics –14 October 2005, Dipartimento di Fisica, Università di Milano Contribution to nuclear.
Reaction dynamics and nuclear structure of moderately neutron-rich Ne isotopes by heavy ion reactions Simone Bottoni University of Milan & KU Leuven INPC.
Rotational energy term in the empirical formula for the yrast energies in even-even nuclei Eunja Ha and S. W. Hong Department of Physics, Sungkyunkwan.
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
Determining Reduced Transition Probabilities for 152 ≤ A ≤ 248 Nuclei using Interacting Boson Approximation (IBA-1) Model By Dr. Sardool Singh Ghumman.
Shell model calculation on even-even Germanium isotopes
Shape parameterization
Yu Zhang(张宇), Feng Pan(潘峰)
Nuclear structure of lowest 229Th states
3. The optical model Prof. Dr. A.J. (Arjan) Koning1,2
Structure and dynamics from the time-dependent Hartree-Fock model
Low energy nuclear collective modes and excitations
Evolution of octupole collectivity in 221Th
Emmanuel Clément IN2P3/GANIL – Caen France
Satoshi Adachi Research Center for Nuclear Physics (RCNP),
The Weak Structure of the Nucleon from Muon Capture on 3He
EXOTIC NUCLEAR STRUCTURE PHENOMENA the complex EXCITED VAMPIR approach
Introduction Calculations for the N=7 isotones Summary
Nuclear Physics, JU, Second Semester,
Myung-Ki Cheoun Soongsil University, Seoul, Korea
a non-adiabatic microscopic description
Nuclear Tidal Waves Daniel Almehed Stefan Frauendorf Yongquin Gu
Kazuo MUTO Tokyo Institute of Technology
Department of Physics, Sichuan University
Presentation transcript:

Consistent analysis of nuclear level structures and nucleon interaction data of Sn isotopes J.Y. Lee 1*, E. Sh. Soukhovitskii 2, Y. D. Kim 1, R. Capote 3, S. Chiba 4, and J. M. Quesada 5 1 Dep. of Physics, Sejong University, Korea 2 Joint Institute for Energy and Nuclear Research, Belarus 3 Nuclear Data Section, IAEA, Austria 4 Advanced Science Research Center, JAEA, Japan 5 Universidad de Sevilla, Spain *

Why Study Tin Isotopes ?  A main component of nuclear reactor material.  A candidate material for superconducting magnets in fusion reactors.  Energy splittings of yrast 0 +, 2 +, 4 + and 6 + levels are irregular. ⇒ may suggest non-harmonic vibrational states?  Sn isotopes are single-closed-shell nuclei of Z=50.  determine whether the calculations using a self- consistent CC optical model may produce different nuclear deformations for different external probes (protons, neutrons) for Sn isotopes.

Present soft-rotator model - Lee et al., PRC 79, (‘09) - Soukhovitskii et al., PRC 72, (‘05) - Capote et al., PRC 72, (‘05) - Soukhovitskii et al., J. Physics G 30, 905(‘04)  Non-axial quadrupole, octupole, hexadecapole deformations  γ -vibrations  Soft-octupole and rigid hexadecapole deformations  Identify positive and negative parity bands, associated with octupole surface vibrations

Calculations i) Nuclear Hamiltonian parameters to reproduce experimental collective levels (determined by fitting the calculated levels to the evaluated nuclear structure data ) ii) Contruct wave functions from these parameters. iii) CC optical Model calculations ⇒ “ Self-consistent ! ”

Present soft-rotator model ⇒ Quite successful in explaining –Nuclear collective level structures, –Nucleon interaction cross sections, –Proton non-elastic scattering cross sections, –γ -transition probabilities, for 12 C, 28 Si, 56 Fe, 58 Ni, & 238 U. - Lee et al.,, PRC 79, (‘09) - Soukhovitskii et al, PRC 72, (‘05) - Capote et al, PRC 72, (‘05) - Soukhovitskii et al., J. Physics G 30, 905(‘04) - Soukhovitskii et al., J. Nucl. Sci. Tech. 40, 69 (‘03), - Soukhovitskii et al., PRC 62, (‘00), NPA 624, 305 (‘98).

Goals Consistent description of collective nuclear level structures & nucleon scattering properties for 116,118,120 Sn using the soft-rotator model. 50

Description of soft-rotator model ASSUME : An excited state of even-even non-spherical nucleus can be described as a combination of rotation, β -quadrupole and octupole vibrations, & γ -quadrupole vibration. Multipole-deformed instant nuclear shape Deformations

Hamiltonian of the soft-rotator model where,

Description of soft-rotator model ASSUME : An excited state of even-even non-spherical nucleus can be described as a combination of rotation, β -quadrupole and octupole vibrations, & γ -quadrupole vibration. Multipole-deformed instant nuclear shape Deformations (Review)

Deformed nuclear potential : ASSUME : is small.

(Non-spherical) Dispersive Optical Potential

(“Lane consistent dispersive CC OMP”)  deal with (p,n) charge exchange reactions [to the elastic Isobaric Analogue States(IAS)] Isospin-dependent dispersive CC OMP Lane equations Soukhovitskii et al, PRC 72, (‘05) Capote et al, PRC 72, (‘05)

Applications to Sn isotopes For 120 Sn(32.59%), 118 Sn (24.22%), 116 Sn (14.54%),  Collective nuclear level structures  Total neutron & proton reaction cross sections  Nucleon elastic & inelastic scattering cross sections [(n,n), (n,n’), (p,p), (p,p’)]  Quasi-elastic (p,n) reactions.

Collective level structures of 120 Sn & 118 Sn ⇒ All the levels are involved in CC calculations. EXP. CALCULATIONS EXP. (i) K≈0,n β =n γ =0 (g.s. rotational band) (ii) K≈0,n β =1,n γ =0 (iii) K≈2,n β =0,n γ =0 (positive parity band) (iv) K≈0,n β =0,n γ =0 (negative parity band) (v) K≈0,n β =0,n γ =1

120 Sn total neutron & proton reaction cross sections

Neutron elastic scattering cross sections 116 Sn(n,n) 118 Sn(n,n) 120 Sn(n,n)

Neutron inelastic scattering cross sections 116 Sn(n,n’) Sn(n,n‘) Sn(n,n’)2 +

Neutron inelastic scattering cross sections 116 Sn(n,n’) Sn(n,n‘) Sn(n,n’)3 -

Proton elastic scattering cross sections 116 Sn(p,p) 118 Sn(p,p) 120 Sn(p,p)

Proton inelastic scattering cross sections 116 Sn(p,p’) Sn(p,p‘) Sn(p,p’)2 +

Proton inelastic scattering off 3 - state 116 Sn(p,p’) Sn(p,p‘) Sn(p,p’)3 -

Quasi-elastic (p,n) reactions 116 Sn(p,n) 118 Sn(p,n) 120 Sn(p,n)

Deformation Parameters Isotope β 20 β 30 β 40 npnp 116 Sn Sn Sn

Summary For 116 Sn, 118 Sn, 120 Sn,  Collective level structures  Total neutron cross sections  Nucleon elastic/inelastic scattering cross sections  Quasi-elastic (p,n) reactions. ⇒ well described within the soft-rotator model self-consistently. [ χ 2 : 6.882( 116 Sn), 8.369( 118 Sn), 6.74( 120 Sn) ]