HW 9 P 56-58 (19-21, 42-50 even, 56, 57, 66, 68-72 even) P100 (12-22 even, 19)

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

Sketching y = a sin bx and y = a cos bx
EcoTherm Plus WGB-K 20 E 4,5 – 20 kW.
AGVISE Laboratories %Zone or Grid Samples – Northwood laboratory
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
Determining signs of Trig Functions (Pos/Neg)
1
EuroCondens SGB E.
Worksheets.
Slide 1Fig 25-CO, p.762. Slide 2Fig 25-1, p.765 Slide 3Fig 25-2, p.765.
& dding ubtracting ractions.
Addition and Subtraction Equations
Multiplication X 1 1 x 1 = 1 2 x 1 = 2 3 x 1 = 3 4 x 1 = 4 5 x 1 = 5 6 x 1 = 6 7 x 1 = 7 8 x 1 = 8 9 x 1 = 9 10 x 1 = x 1 = x 1 = 12 X 2 1.
Division ÷ 1 1 ÷ 1 = 1 2 ÷ 1 = 2 3 ÷ 1 = 3 4 ÷ 1 = 4 5 ÷ 1 = 5 6 ÷ 1 = 6 7 ÷ 1 = 7 8 ÷ 1 = 8 9 ÷ 1 = 9 10 ÷ 1 = ÷ 1 = ÷ 1 = 12 ÷ 2 2 ÷ 2 =
1 Special Angle Values. 2 Directions A slide will appear showing a trig function with a special angle. Say the value aloud before the computer can answer.
David Burdett May 11, 2004 Package Binding for WS CDL.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Add Governors Discretionary (1G) Grants Chapter 6.
CALENDAR.
1 1  1 =.
CHAPTER 18 The Ankle and Lower Leg
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Year 6 mental test 5 second questions
The 5S numbers game..
Break Time Remaining 10:00.
Division- the bus stop method
Factoring Quadratics — ax² + bx + c Topic
PP Test Review Sections 6-1 to 6-6
Look at This PowerPoint for help on you times tables
Slide 6-1 COMPLEX NUMBERS AND POLAR COORDINATES 8.1 Complex Numbers 8.2 Trigonometric Form for Complex Numbers Chapter 8.
VOORBLAD.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
BIOLOGY AUGUST 2013 OPENING ASSIGNMENTS. AUGUST 7, 2013  Question goes here!
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
Least Common Multiples and Greatest Common Factors
Before Between After.
THE UNIT CIRCLE Reference Angles And Trigonometry.
25 seconds left…...
Trigonometric Functions and Graphs
Subtraction: Adding UP
Right Triangle Trigonometry
Trigonometric Functions of Any Angle
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
We will resume in: 25 Minutes.
Static Equilibrium; Elasticity and Fracture
Fractions Simplify: 36/48 = 36/48 = ¾ 125/225 = 125/225 = 25/45 = 5/9
Converting a Fraction to %
Resistência dos Materiais, 5ª ed.
Clock will move after 1 minute
PSSA Preparation.
& dding ubtracting ractions.
Physics for Scientists & Engineers, 3rd Edition
Select a time to count down from the clock above
Doubling and Halving. CATEGORY 1 Doubling and Halving with basic facts.
1 Dr. Scott Schaefer Least Squares Curves, Rational Representations, Splines and Continuity.
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
Schutzvermerk nach DIN 34 beachten 05/04/15 Seite 1 Training EPAM and CANopen Basic Solution: Password * * Level 1 Level 2 * Level 3 Password2 IP-Adr.
Day 2 and Day 3 notes. 1.4 Definition of the Trigonometric Functions OBJ:  Evaluate trigonometric expressions involving quadrantal angles OBJ:  Find.
Day 3 Notes. 1.4 Definition of the Trigonometric Functions OBJ:  Evaluate trigonometric expressions involving quadrantal angles OBJ:  Find the angle.
1.5 Using the Definitions of the Trigonometric Functions OBJ: Give the signs of the six trigonometric functions for a given angle OBJ: Identify the quadrant.
Trigonometry/Precalculus ( R )
13.3 Evaluating Trigonometric Functions
1.4 Definition of the Trigonometric Functions OBJ:  Find the values of the six trigonometric functions of an angle in standard position.
Section 1.4 Trigonometric Functions an ANY Angle Evaluate trig functions of any angle Use reference angles to evaluate trig functions.
EXAMPLE 1 Evaluate trigonometric functions given a point Let (–4, 3) be a point on the terminal side of an angle θ in standard position. Evaluate the six.
Presentation transcript:

HW 9 P 56-58 (19-21, 42-50 even, 56, 57, 66, 68-72 even) P100 (12-22 even, 19)

19  Find the angles of smallest possible measure coterminal with the following angles: -51 (Like #2) y x 5 -5

19  Find the angles of smallest possible measure coterminal with the following angles: -51 (Like #2) 360° -51° 309° y x 5 -5

20  Find the angles of smallest possible measure coterminal with the following angles: -174 (Like #2) y x 5 -5

20  Find the angles of smallest possible measure coterminal with the following angles: -174 (Like #2) 360° -174 186° y x 5 -5

21  Find the angles of smallest possible measure coterminal with the following angles: 792 (Like #1) y x 5 -5

21  Find the angles of smallest possible measure coterminal with the following angles: 792 (Like #1) 792  – 720  72  y x 5 -5

72.If for , sin  < 0 and cos  > 0, in what quadrant must  lie? What is the sign of tan ? (Like # 3-8) sin  < 0 and cos  > 0 tan  is ___________in Quadrant lV.

72.If for , sin  < 0 and cos  > 0, in what quadrant must  lie? What is the sign of tan ? (Like # 3-8) sin  < 0 and cos  > 0 lll, lV l, lV lV tan  is negative in Quadrant lV.

44 Find the values of the six trigonometric functions for an angle of 360. (Like #9-12)(R = 1) Sin = Y 0 R Cos = X 1 Tan = Y 0 X Csc = R Ø Y Sec = R 1 X Cot = X Ø Y (1, 0) y x 5 -5

12. Find the values of the six trigonometric functions of 120° (Like #13-19) Sin = Y √ 3 R 2 Cos = X -1 Tan = Y √ 3 X -1 Csc = R 2√ 3 Y 3 Sec = R = -2 X √3 2 -1 Cot = X √ 3 Y 3 y x 5 -5

12. Find the values of the six trigonometric functions of 120° (Like #13-19) √3 2 -1 Sin √ 3 2 Csc 2√ 3 3 Cos -1 Sec - 2 Tan -√ 3 Cot y x 5 -5

14. Find the values of the six trigonometric functions of 225° (Like #13-19) Sin = Y = 1 R -2 Cos = X = 1 Tan = Y 1 X Csc = R -2 Y Sec = R -2 X -1 Cot = X 1 2 y x 5 -5

14. Find the values of the six trigonometric functions of 225° (Like #13-19) -1 2 Sin 2 2 Csc Cos Sec -2 Tan 1 Cot y x 5 -5

56.Evaluate 4 sec180 – 2sin2270 (Like #20-21) 4(-1) – 2(-1)2 - 4 – 2 - 6

57.Evaluate -cot290°+4sin270°–3tan180° (Like #20-21) -(02) + 4(-1) – 3(0) 0 – 4 – 0 -4

20. Evaluate cos60 + 2sin230 (Like # 22-23) ½ + 2(½)2 ½ + 2(1/4) ½ + ½ 1

22. Evaluate sec2300–2cos2150+tan45 (Like #22-23) 22 – 2(-3/2)2 + 1 4 – 2 (3/4) + 1 4 – 1½ + 1 3½

42  The terminal side of an angle  in standard position goes through the point (1,-3 ). Find the values of the six trigonometric functions of (Like #24-25) X2 + Y2 = R2 12 + (3)2 = R2 1 + 3 = R2 4 = R2 2 = R Sin = Y =-3 R 2 Cos = X = 1 R 2 Tan = Y =-3 X Csc = R =-23 Y 3 Sec = R = 2 X 1 1 -3 Cot = X =-3 Y 3 y x 5 -5

46  The terminal side of an angle  in standard position goes through the point (3,-4). Find the values of the six trigonometric functions of (Like #24-25) Csc = R 5 Y -4 Sec = R 5 X 3 3 Cot = X 3 -4 Sin = Y -4 R 5 Cos = X 3 Tan = Y -4 X 3 y x 5 -5

48  The terminal side of an angle  in standard position goes through the point (9,-2). Find the values of the six trigonometric functions of (Like #24-25) X2 + Y2 = R2 92 + (-2)2 = R2 81 + 4 = R2 9 85 = R2 85 = R Sin = Y = -285 R 85 Cos = X = 985 R 85 Tan = Y = -2 X 9 Csc = R =85 Y -2 Sec = R = 85 X 9 Cot = X = 9 9 Y -2 -2 y x 5 -5

50  The terminal side of an angle  in standard position goes through the point (-22,22 ). Find the values of the six trigonometric functions of (Like #24-25) Csc = R = 2 Y Sec = R = -2 X 22 Cot = X = -1 -22 X2 + Y2 = R2 (-22)2 + (22)2 = R2 8 + 8 = R2 16 = R2 4 = R Sin = Y = 2 R 2 Cos = X = -2 Tan = Y = -1 X y x 5 -5

66. Find the values of the six trigonometric functions of  (Like #26-29) sin  = √3 , cos  < 0 5 y x 5 -5

66. Find the values of the six trigonometric functions of  (Like #26-29) sin  = √3 , cos  < 0 X2 +√32 = 52 5 X2 + 3 = 25 Sin = Y Csc = R X2 = 22 R Y X = 22 Cos = X Sec = R √3 5 R X Tan = Y Cot = X X Y y x 5 -5

66. Find the values of the six trigonometric functions of  (Like #26-29) sin  = √3 , cos  < 0 5 Sin = Y √3 R 5 Cos = X -√22 R 5 Tan = Y -√66 X 22 Csc = R 5√3 Y 3 Sec = R - 5√22 X 22 Cot = X -√66 Y 3 5 3 y x 5 -5

68. Find the values of the six trigonometric functions of  (Like #26-29) tan  = 2,  in Q3 X2 + Y2 = R2 (-1)2 + (-2)2 = R2 1 + 4 = R2 5 = R2 5 = R y x 5 -5

68. Find the values of the six trigonometric functions of  (Like #26-29) tan  = 2,  in Q3 Sin = Y -25 R 5 Cos = X -√5 Tan = Y 2 - X Csc = R 5 Y -2 Sec = R 5 X -1 Cot = X 1 Y 2 y x 5 -5

70. Find the values of the six trigonometric functions of  (Like #26-29) sin  = -2,  in Q3 5 y x 5 -5

70. Find the values of the six trigonometric functions of  (Like #26-29) sin  = -2,  in Q3 5 X2 + Y2 = R2 X2 + (-2)2 = 52 X2 + 4 = 25 X2 = 21 X = 21 y x 5 -5

70. Find the values of the six trigonometric functions of  (Like #26-29) sin  = -2,  in Q3 5 Sin = Y Csc = R -5 R Y 2 Cos = X -√21 Sec = R -5√21 R 5 X 21 Tan = Y 2√21 Cot = X √21 X 21 Y 2 -2 5 y x 5 -5

Find all values of  in [0, 360) and has the given function value. 16. sin  = -1/2 210, 330  18. cot  = -1 135, 315 19. sec  = -23/3 150, 210