Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List the 4 theorems/postulates.

Slides:



Advertisements
Similar presentations
Warm Up Lesson Presentation Lesson Quiz.
Advertisements

Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Proving Triangles Congruent Geometry D – Chapter 4.4.
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List methods used.
Triangle Congruence: SSS and SAS
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-3, 4-4, and 4-5 Congruent Triangles Warm Up Lesson Presentation
Warm Up 1. Name the angle formed by AB and AC. 2.Name the three sides of ABC. 3. ∆ QRS  ∆ LMN. Name all pairs of congruent corresponding parts. Possible.
SIMILAR TRIANGLES.
Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Triangle Similarity: AA, SSS, and SAS 7-3 Holt Geometry.
11. No, need  MKJ   MKL 12. Yes, by Alt Int Angles  SRT   UTR and  STR   URT; RT  RT (reflex) so ΔRST  ΔTUR by ASA 13.  A   D Given  C 
Section 7 : Triangle Congruence: CPCTC
Angle Relationships in Triangles Holt Geometry Lesson Presentation Lesson Presentation Holt McDougal Geometry.
Do Now 1. ∆ QRS  ∆ LMN. Name all pairs of congruent corresponding parts. 2.Find the equation of the line through the points (3, 7) and (5, 1) QR  LM,
1. Name the angle formed by AB and AC.
Holt Geometry 4-6 Triangle Congruence: CPCTC Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-6 Triangle Congruence: CPCTC Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz Holt McDougal Geometry.
4-6 Triangle Congruence: CPCTC Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 4-6 Triangle Congruence: CPCTC 4-6 Triangle Congruence: CPCTC Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
CPCTC Be able to use CPCTC to find unknowns in congruent triangles! Are these triangles congruent? By which postulate/theorem? _____  _____ J L K N M.
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List methods used.
Warm-up Identify the postulate or theorem that proves the triangles congruent.
Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
________________ is an abbreviation for the phrase “Corresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification in a proof.
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-6 Triangle Congruence: CPCTC Holt Geometry.
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ? .
Geometry 4-6 CPCTC. Definition  Corresponding Parts of Congruent Triangles are Congruent (CPCTC)  If two triangles are congruent, then all of their.
Unit 4: Triangle congruence
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Chapters 2 – 4 Proofs practice. Chapter 2 Proofs Practice Commonly used properties, definitions, and postulates  Transitive property  Substitution property.
Holt Geometry 4-3 Congruent Triangles 4-3 Congruent Triangles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
4-8 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Objective Use CPCTC to prove parts of triangles are congruent.
Objective! Use CPCTC to prove parts of triangles are congruent.
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-3 Congruent Triangles Holt Geometry Lesson Presentation.
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Objective! Use CPCTC to prove parts of triangles are congruent.
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
5.7 Vocabulary CPCTC CPCTC is an abbreviation for the phrase “Corresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Objective Use CPCTC to prove parts of triangles are congruent.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm-Up Which congruence shortcut, if any,
CPCTC uses congruent triangles to prove corresponding parts congruent.
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC 4-4
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Objective We will analyze congruent triangles
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Congruent Triangles. Congruence Postulates.
4-1 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Warm Up Find the measures of the sides of ∆ABC and classify the triangle by its sides. A(-7, 9) B(-7, -1) C(4, -1) AB = 10 BC = 11 AC = √221 The triangle.
Presentation transcript:

Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List the 4 theorems/postulates used to prove two triangles congruent: D D EF 17 Converse of Alternate Interior Angles Theorem SSS, SAS, ASA, AAS

Correcting Assignment #36 (all but 17, 21) segments: 1 triangle 3 angles: infinite triangles

Use CPCTC to prove parts of triangles are congruent. Chapter 4.4 Using Corresponding Parts of Congruent Triangles

CPCTC is an abbreviation for the phrase “Corresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification in a proof after you have proven two triangles congruent.

SSS, SAS, ASA, and AAS use corresponding parts to prove triangles congruent. CPCTC uses congruent triangles to prove corresponding parts congruent. This is similar to the converse theorems in Chapter 3. Remember!

Example 1: Engineering Application A and B are on the edges of a ravine. What is AB? One angle pair is congruent, because they are vertical angles. Two pairs of sides are congruent, because their lengths are equal. Therefore the two triangles are congruent by SAS. By CPCTC, the third side pair is congruent, so AB = 18 mi.

Check It Out! Example 1 A landscape architect sets up the triangles shown in the figure to find the distance JK across a pond. What is JK? One angle pair is congruent, because they are vertical angles. Two pairs of sides are congruent, because their lengths are equal. Therefore the two triangles are congruent by SAS. By CPCTC, the third side pair is congruent, so JK = 41 ft.

Example 2: Proving Corresponding Parts Congruent Prove: XYW  ZYW Given: YW bisects XZ, XY  YZ. Z

Example 2 Continued WY ZW

Check It Out! Example 2 Prove: PQ  PS Given: PR bisects QPS and QRS.

Check It Out! Example 2 Continued PR bisects QPS and QRS QRP  SRP QPR  SPR Given Def. of  bisector RP  PR Reflex. Prop. of  ∆PQR  ∆PSR PQ  PS ASA CPCTC

Example 3: Using CPCTC in a Proof Prove: MN || OP Given: NO || MP, N  P

5. CPCTC 5. NMO  POM 6. Conv. Of Alt. Int. s Thm. 4. AAS 4. ∆MNO  ∆OPM 3. Reflex. Prop. of  2. Alt. Int. s Thm.2. NOM  PMO 1. Given ReasonsStatements 3. MO  MO 6. MN || OP 1. N  P; NO || MP Example 3 Continued

Assignment #37: Pages Foundation: 6, 7 Core: 9, 10 Review: 27-32

Check It Out! Example 3 Prove: KL || MN Given: J is the midpoint of KM and NL.

Check It Out! Example 3 Continued 5. CPCTC 5. LKJ  NMJ 6. Conv. Of Alt. Int. s Thm. 4. SAS Steps 2, 3 4. ∆KJL  ∆MJN 3. Vert. s Thm.3. KJL  MJN 2. Def. of mdpt. 1. Given ReasonsStatements 6. KL || MN 1. J is the midpoint of KM and NL. 2. KJ  MJ, NJ  LJ

Lesson Quiz: Part I 1. Given: Isosceles ∆PQR, base QR, PA  PB Prove: AR  BQ

4. Reflex. Prop. of 4. P  P 5. SAS Steps 2, 4, 3 5. ∆QPB  ∆RPA 6. CPCTC6. AR = BQ 3. Given3. PA = PB 2. Def. of Isosc. ∆2. PQ = PR 1. Isosc. ∆PQR, base QR Statements 1. Given Reasons Lesson Quiz: Part I Continued

Lesson Quiz: Part II 2. Given: X is the midpoint of AC. 1  2 Prove: X is the midpoint of BD.

Lesson Quiz: Part II Continued 6. CPCTC 7. Def. of  7. DX = BX 5. ASA Steps 1, 4, 5 5. ∆ AXD  ∆ CXB 8. Def. of mdpt.8. X is mdpt. of BD. 4. Vert. s Thm.4. AXD  CXB 3. Def of 3. AX  CX 2. Def. of mdpt.2. AX = CX 1. Given 1. X is mdpt. of AC. 1  2 ReasonsStatements 6. DX  BX