Book Embeddings of Chessboard Graphs Casey J. Hufford Morehead State University.

Slides:



Advertisements
Similar presentations
3.6 Support Vector Machines
Advertisements

By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Analysis of Algorithms
Thursday, March 7 Duality 2 – The dual problem, in general – illustrating duality with 2-person 0-sum game theory Handouts: Lecture Notes.
0 - 0.
Addition Facts
1 Access Control. 2 Objects and Subjects A multi-user distributed computer system offers access to objects such as resources (memory, printers), data.
Discrete Math Recurrence Relations 1.
Copyright © Cengage Learning. All rights reserved.
Chapter 9 -- Simplification of Sequential Circuits.
Great Theoretical Ideas in Computer Science for Some.
Graphs, Planar graphs Graph coloring
Graphs, representation, isomorphism, connectivity
KNURE, Software department, Ph , N.V. Bilous Faculty of computer sciences Software department, KNURE An Euler.
Discrete Mathematics Dr.-Ing. Erwin Sitompul
Discrete Mathematics 6. GRAPHS Lecture 10 Dr.-Ing. Erwin Sitompul
1 Motion and Manipulation Configuration Space. Outline Motion Planning Configuration Space and Free Space Free Space Structure and Complexity.
5.4 Basis And Dimension.
Computer Graphics- SCC 342
Composition of Solutions for the n+k Queens Separation Problem Biswas Sharma Jonathon Byrd Morehead State University Department of Mathematics, Computer.
Addition 1’s to 20.
Finite-state Recognizers
Week 1.
Local Search Jim Little UBC CS 322 – CSP October 3, 2014 Textbook §4.8
CPSC 322, Lecture 14Slide 1 Local Search Computer Science cpsc322, Lecture 14 (Textbook Chpt 4.8) Oct, 5, 2012.
CS203 Lecture 15.
From Approximative Kernelization to High Fidelity Reductions joint with Michael Fellows Ariel Kulik Frances Rosamond Technion Charles Darwin Univ. Hadas.
Bart Jansen 1.  Problem definition  Instance: Connected graph G, positive integer k  Question: Is there a spanning tree for G with at least k leaves?
Epp, section 10.? CS 202 Aaron Bloomfield
 Theorem 5.9: Let G be a simple graph with n vertices, where n>2. G has a Hamilton circuit if for any two vertices u and v of G that are not adjacent,
Covers, Dominations, Independent Sets and Matchings AmirHossein Bayegan Amirkabir University of Technology.
Interval Graph Test.
Chapter 8 Topics in Graph Theory
Minimum Vertex Cover in Rectangle Graphs
A. S. Morse Yale University University of Minnesota June 4, 2014 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
13-Optimization Assoc.Prof.Dr. Ahmet Zafer Şenalp Mechanical Engineering Department Gebze Technical.
1 Graphs with Maximal Induced Matchings of the Same Size Ph. Baptiste 1, M. Kovalyov 2, Yu. Orlovich 3, F. Werner 4, I. Zverovich 3 1 Ecole Polytechnique,
Section 3.4 The Traveling Salesperson Problem Tucker Applied Combinatorics By Aaron Desrochers and Ben Epstein.
Orthogonal Drawing Kees Visser. Overview  Introduction  Orthogonal representation  Flow network  Bend optimal drawing.
22C:19 Discrete Math Graphs Fall 2010 Sukumar Ghosh.
22C:19 Discrete Math Graphs Fall 2014 Sukumar Ghosh.
Midwestern State University Department of Computer Science Dr. Ranette Halverson CMPS 2433 – CHAPTER 4 GRAPHS 1.
13 May 2009Instructor: Tasneem Darwish1 University of Palestine Faculty of Applied Engineering and Urban Planning Software Engineering Department Introduction.
The Analysis and Design of Approximation Algorithms for the Maximum Induced Planar Subgraph Problem Kerri Morgan Supervisor: Dr. G. Farr.
Graph Drawing Introduction 2005/2006. Graph Drawing: Introduction2 Contents Applications of graph drawing Planar graphs: some theory Different types of.
An Euler Circuit is a cycle of an undirected graph, that traverses every edge of the graph exactly once, and ends at the same node from which it began.
Approximation Algorithms
Contents Introduction Related problems Constructions –Welch construction –Lempel construction –Golomb construction Special properties –Periodicity –Nonattacking.
Curve Curve: The image of a continous map from [0,1] to R 2. Polygonal curve: A curve composed of finitely many line segments. Polygonal u,v-curve: A polygonal.
22C:19 Discrete Math Graphs Spring 2014 Sukumar Ghosh.
The Equivalence Number and Transit Graphs for Chessboard Graphs B. Nicholas Wahle Morehead State University.
Lecture 17: Spanning Trees Minimum Spanning Trees.
Graph Theory Chapter 6 Planar Graphs Ch. 6. Planar Graphs.
Copyright © Cengage Learning. All rights reserved. CHAPTER 10 GRAPHS AND TREES.
Chapter 6 Graph Theory R. Johnsonbaugh Discrete Mathematics 5 th edition, 2001.
HISTORY The problem was originally proposed in 1848 by the chess player Max Bezzel, and over the years, many mathematicians, including Gauss have worked.
(CSC 102) Lecture 28 Discrete Structures. Graphs.
Indian Institute of Technology Kharagpur PALLAB DASGUPTA Graph Theory: Introduction Pallab Dasgupta, Professor, Dept. of Computer Sc. and Engineering,
Planar Graphs Graph Coloring
1 12/2/2015 MATH 224 – Discrete Mathematics Formally a graph is just a collection of unordered or ordered pairs, where for example, if {a,b} G if a, b.
Graph.
An Introduction to Graph Theory
Graph Theory and Applications
Chapter 13 Backtracking Introduction The 3-coloring problem
Chapter 20: Graphs. Objectives In this chapter, you will: – Learn about graphs – Become familiar with the basic terminology of graph theory – Discover.
Planarity and Euler’s Formula
Ch09 _2 Approximation algorithm
GRAPH THEORY Properties of Planar Graphs Ch9-1.
Agenda Review Lecture Content: Shortest Path Algorithm
GRAPH THEORY Properties of Planar Graphs Ch9-1.
Presentation transcript:

Book Embeddings of Chessboard Graphs Casey J. Hufford Morehead State University

History of the n-Queens Problem 1848 – Max Bezzel 1848 – Max Bezzel 8-Queens Problem: Can eight queens be placed on an 8x8 board such that no two queens attack one another? 8-Queens Problem: Can eight queens be placed on an 8x8 board such that no two queens attack one another? 1850 – Franz Nauck 1850 – Franz Nauck n-Queens Problem: Can n queens be placed on an nxn board such that no two queens attack one another? n-Queens Problem: Can n queens be placed on an nxn board such that no two queens attack one another? 2004 – Chess Variant Pages 2004 – Chess Variant Pages Pawn Placement Problem: How many pawns are necessary to place nine queens on an 8x8 board such that no two queens can attack one another? Pawn Placement Problem: How many pawns are necessary to place nine queens on an 8x8 board such that no two queens can attack one another?

Definition of the Queens Graph The nxn queens graph Q nxn is the diagram created by connecting the vertices of two cells on a chessboard with an edge if a queen can travel from one vertex to the other in a single turn. (Gripshover 2007) The nxn queens graph Q nxn is the diagram created by connecting the vertices of two cells on a chessboard with an edge if a queen can travel from one vertex to the other in a single turn. (Gripshover 2007) Q nxn can be broken down into rows, columns, and diagonals. Q nxn can be broken down into rows, columns, and diagonals. A complete graph K n is a graph on n vertices such that all possible edges between two vertices exist in the graph. (Blankenship 2003) A complete graph K n is a graph on n vertices such that all possible edges between two vertices exist in the graph. (Blankenship 2003)

Examples of K 4 Graphs Figure 1: Different representations of a K 4

Number of Edges in Q nxn A complete graph on n vertices has total edges. A complete graph on n vertices has total edges. Q nxn can be broken down into rows, columns, and diagonals to determine the total number of edges. Q nxn can be broken down into rows, columns, and diagonals to determine the total number of edges. Rows:|E| = Rows:|E| = Columns:|E| = Columns:|E| = Diagonals:|E| = n(n-1) + 4 Diagonals:|E| = n(n-1) + 4 Summing the above values yields: Summing the above values yields: |E(Q nxn )| = n(n 2 -1) + 4 |E(Q nxn )| = n(n 2 -1) + 4

Broken Down Edges of Q 4x4 Figure 2: Q 4x4 rows Figure 3: Q 4x4 columns Figure 4: Q 4x4 diagonals

Total Edges of Q 4x4 Figure 5: Q 4x4

Book Embeddings A book consists of a set of pages (half-planes) whose boundaries are identified on a spine (line). (Blankenship 2003) A book consists of a set of pages (half-planes) whose boundaries are identified on a spine (line). (Blankenship 2003) To embed a graph in a book linearly order the vertices in the spine and assign edges to pages such that: To embed a graph in a book linearly order the vertices in the spine and assign edges to pages such that: Each edge is assigned to exactly one page. Each edge is assigned to exactly one page. No two edges cross in a page. No two edges cross in a page.

Book Thickness The book thickness of a graph G, denoted BT(G), is the fewest number of pages needed to embed a graph in a book over all possible vertex orderings and edge assignments. (Blankenship 2003) The book thickness of a graph G, denoted BT(G), is the fewest number of pages needed to embed a graph in a book over all possible vertex orderings and edge assignments. (Blankenship 2003) An outerplanar graph can be drawn in a plane such that no two edges cross and every vertex is incident with the infinite face. An outerplanar graph can be drawn in a plane such that no two edges cross and every vertex is incident with the infinite face. Useful book thickness results: Useful book thickness results: BT(G) = 1 if and only if G is outerplanar. (Gripshover 2007) BT(G) = 1 if and only if G is outerplanar. (Gripshover 2007) BT(K n ) =. (Chung, Leighton, Rosenburg 1987),(Blankenship 2003) BT(K n ) =. (Chung, Leighton, Rosenburg 1987),(Blankenship 2003)

Book Embedding Examples Figure 6: Embedding of K 4 in, or 2 pages. (Chung, Leighton, Rosenburg 1987) Figure 7: Embedding of O 16 in one page. (Gripshover 2007)

Past Work: Queens Graph Upper Bound MSU undergraduate Kelly Gripshover: MSU undergraduate Kelly Gripshover: Upper bound involved a combination of graphing techniques. Upper bound involved a combination of graphing techniques. Star Star Weave Weave Finagled (manual manipulation) Finagled (manual manipulation) Focused mainly on the 4x4 queens graph. She found that BT(Q 4x4 ) ≤ 13. (Gripshover 2007) Focused mainly on the 4x4 queens graph. She found that BT(Q 4x4 ) ≤ 13. (Gripshover 2007)

Star and Weave Patterns Figure 8: Star pattern for K 5 Figure 9: Weave pattern for Q 4x4 Figure 8: Star pattern for K 5 Figure 9: Weave pattern for Q 4x4

Current Work: Queens Graph Upper Bound A subgraph H of a graph G has two properties: A subgraph H of a graph G has two properties: The vertex set of H is a subset of the vertex set of G The vertex set of H is a subset of the vertex set of G The edge set of H is a subset of the edge set of G. The edge set of H is a subset of the edge set of G. In other words, H is obtained from G by a sequence of deleting edges and vertices of G. Note that if a vertex is deleted, the edges adjacent to the vertex must also be deleted. (Bondy, Murty 1981) In other words, H is obtained from G by a sequence of deleting edges and vertices of G. Note that if a vertex is deleted, the edges adjacent to the vertex must also be deleted. (Bondy, Murty 1981) Q nxn is a subgraph of the complete graph K. Q nxn is a subgraph of the complete graph K. BT(Q nxn ) ≤ BT(K ), which is equivalent to BT(Q nxn ) ≤. BT(Q nxn ) ≤ BT(K ), which is equivalent to BT(Q nxn ) ≤.

Q 4x4 Upper Bound Figure 10: Book embedding of Q 4x4 in eight pages. (Chung, Leighton, Rosenburg 1987)

Definition of Maximal Outerplanar Graph A maximal outerplanar graph is an outerplanar graph such that no edges can be added without violating the graph’s outerplanarity. (Ku, Wang 2002) A maximal outerplanar graph is an outerplanar graph such that no edges can be added without violating the graph’s outerplanarity. (Ku, Wang 2002) Figure 11: Outerplanar Figure 12: Maximal outerplanar

Number of Edges in a Maximal Outerplanar Graph The number of edges in a maximal outerplanar graph on n vertices is equal to 2n-3. The number of edges in a maximal outerplanar graph on n vertices is equal to 2n-3. Figure 13: n=8, eight adjacent vertices Figure 14: n=8, five non-adjacent vertices Figure 13: n=8, eight adjacent vertices Figure 14: n=8, five non-adjacent vertices

Past Work: Queens Graph Lower Bound BT(G) = 1 if and only if G is outerplanar, so maximum number of edges embeddable in a single page is |E(O)|. BT(G) = 1 if and only if G is outerplanar, so maximum number of edges embeddable in a single page is |E(O)|. |E(O max )| = 2n 2 -3 when |V(O max )| = n 2. |E(O max )| = 2n 2 -3 when |V(O max )| = n 2. Gripshover’s lower bound: Gripshover’s lower bound: Assumed 2n 2 -3 edges in every page Assumed 2n 2 -3 edges in every page

Current Work: Queens Graph Lower Bound First page has 2n 2 -3 edges First page has 2n 2 -3 edges Every page after first has n 2 -3 edges Every page after first has n 2 -3 edges Compare |E(Q nxn )| to maximum number of edges embeddable in a book with B pages: Compare |E(Q nxn )| to maximum number of edges embeddable in a book with B pages: n(n 2 -1) + 4 ≤ n 2 + B(n 2 -3) Thus, B ≥. Thus, B ≥.

Q 4x4 Bound Comparison Old techniques: Old techniques: 3 ≤ BT(Q 4x4 ) ≤ 13 3 ≤ BT(Q 4x4 ) ≤ 13 New techniques: New techniques: 5 ≤ BT(Q 4x4 ) ≤ 8 5 ≤ BT(Q 4x4 ) ≤ 8

Single Pawn Placement What effect does placing a single pawn on the board have on the upper and lower bounds? What effect does placing a single pawn on the board have on the upper and lower bounds? Two sets of edges are removed: Two sets of edges are removed: All edges with the pawn vertex v p as an endpoint. All edges with the pawn vertex v p as an endpoint. All edges “crossing over” v p. All edges “crossing over” v p. Figure 15: Pawn blocking queen movement Figure 15: Pawn blocking queen movement

Single Pawn Edge Removal Conjecture: The number of edges removed depends on the dimensions of the board, the row number, of the board, the row number, and the column number: (2r+c)n (2i-2) - (2k-3), (2r+c)n (2i-2) - (2k-3), which is equal to (2r+c)n c(c-1) - (r-1) 2 (2r+c)n c(c-1) - (r-1) 2 where c represents the column number, r the row, and c ≤ r ≤. Figure 18: Fundamental pawn placements (unique pawn placements after any combination of rotations and reflections) for the 3x3 to 7x7 cases

Single Pawn Lower Bound The number of edges remaining in Q nxn after single pawn placement is given by: The number of edges remaining in Q nxn after single pawn placement is given by: [n(n 2 -1) + 4 ] - [(2r+c)n c(c-1) - (r-1) 2 ] Once again, compare |E(Q nxn ( p rc ))| to the number of edges in a maximal outerplanar graph on n 2 vertices. Once again, compare |E(Q nxn ( p rc ))| to the number of edges in a maximal outerplanar graph on n 2 vertices. Thus, B ≥ Thus, B ≥

Single Pawn Upper Bound Upper bound established using complete graphs Upper bound established using complete graphs Adding a pawn similar (though not equivalent) to removing v p Adding a pawn similar (though not equivalent) to removing v p Q nxn ( p rc ) is a subgraph of K Q nxn ( p rc ) is a subgraph of K BT(Q nxn (p rc )) ≤ BT(Q nxn (p rc )) ≤ Figure 19: Edges remaining after pawn placement Figure 20: Edges remaining after removing vertex

Summary The nxn Queens Graph Q nxn : The nxn Queens Graph Q nxn : ≤ BT(Q nxn ) ≤ ≤ BT(Q nxn ) ≤ The nxn Queens Graph After Single Pawn Placement Q nxn ( p rc ): The nxn Queens Graph After Single Pawn Placement Q nxn ( p rc ): ≤ BT(Q nxn (p rc )) ≤ ≤ BT(Q nxn (p rc )) ≤

References F.R.K. Chung, F.T. Leighton, and A.L. Rosenburg, Embedding Graphs in Books: A Layout Problem with Application to VLSI Design, SIAM J. Alg. Disc. Meth. 8 (1987), Kelly Gripshover, The Book of Queens, preprint, Morehead State University, J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, 4 th ed. (1981). Robin Blankenship, Book Embeddings of Graphs, dissertation, Louisiana State University – Baton Rouge, Shan-Chyun Ku and Biing-Feng Wang, An Optimal Simple Parallel Algorithm for Testing Isomorphism of Maximal Outerplanar Graphs, J. of Par. and Dist. Com. (2002),