2.5 Absolute Value Functions and Graphs Graphing NEGATIVE Absolute Value Functions
Negative Absolute Value Functions The vertex is a MAXIMUM Negative absolute value functions open DOWN
Finding the Vertex For an equation y = -|mx + b| + c, vertex = -b , c Example: Find the vertex of y = -|x + 1| - 2
Finding the Vertex For an equation y = |mx + b| + c, vertex = -b , c m Example: Find the vertex of y = -|x + 1| - 2 Answer: = -1 , -2 1 = -1 , -2
Absolute Value Functions Steps to graphing a negative absolute value function… Find the vertex Write two linear equations and find slope Use slope to plot points, connect the dots
Absolute Value Functions Example 1: Graph y = -|3x + 12|
Absolute Value Functions Step 1: Find the vertex y = -|3x + 12| m = -b = c =
Absolute Value Functions Step 1: Find the vertex y = -|3x + 12| m = 3 -b = -12 c = 0
Absolute Value Functions Step 1: Find the vertex y = -|3x + 12| m = 3 -b = -12 c = 0 vertex = -b , c m vertex = -12 , 0 3 vertex = (-4, 0)
Absolute Value Functions Step 1: Find the vertex vertex = (-4, 0)
Absolute Value Functions Step 2: Write two linear equations and find slope. y = -|3x + 12| Positive Negative
Absolute Value Functions Step 2: Write two linear equations and find slope. y = -|3x + 12| Positive Negative y = -3x - 12 y = -(-3x – 12) y = 3x + 12 m1 = -3 m2 = 3
Absolute Value Functions Step 3: Use the slope to plot points vertex = (-4, 0) m1 = -3 m2 = 3
Absolute Value Functions Step 3: Use the slope to plot points vertex = (-4, 0) m1 = -3 m2 = 3
Absolute Value Functions Step 3: Use the slope to plot points vertex = (-4, 0) m1 = -3 m2 = 3
Absolute Value Functions Step 3: Use the slope to plot points vertex = (-4, 0) m1 = -3 m2 = 3
Absolute Value Functions Step 3: Use the slope to plot points vertex = (-4, 0) m1 = -3 m2 = 3
Absolute Value Functions Step 3: Use the slope to plot points vertex = (-4, 0) m1 = -3 m2 = 3
Absolute Value Functions Example 2: Graph y = -|3x + 6| - 2
Absolute Value Functions Step 1: Find the vertex y = -|3x + 6| - 2
Absolute Value Functions Step 1: Find the vertex y = -|3x + 6| - 2 m = 3 -b = -6 c = -2 vertex = (-6/3, -2) = (-2, -2)
Absolute Value Functions Step 1: Find the vertex vertex = (-2, -2)
Absolute Value Functions Step 2: Write two linear equations and find slope y = -|3x + 6| - 2 Positive Negative
Absolute Value Functions Step 2: Write two linear equations and find slope y = -|3x + 6| - 2 Positive Negative y + 2 = -(3x + 6) y + 2 = -[-(3x + 6)] y + 2 = -3x – 6 y + 2 = 3x + 6 y = -3x – 8 y = 3x + 4
Absolute Value Functions Step 2: Write two linear equations and find slope y = -|3x + 6| - 2 Positive Negative y + 2 = -(3x + 6) y + 2 = -[-(3x + 6)] y + 2 = -3x – 6 y + 2 = 3x + 6 y = -3x – 8 y = 3x + 4 m1 = -3 m2 = 3
Absolute Value Functions Step 3: Use the slope to plot points vertex = (-2, -2) m1 = -3 m2 = 3
Absolute Value Functions Step 3: Use the slope to plot points vertex = (-2, -2) m1 = -3 m2 = 3
Absolute Value Functions Step 3: Use the slope to plot points vertex = (-2, -2) m1 = -3 m2 = 3
Absolute Value Functions Step 3: Use the slope to plot points vertex = (-2, -2) m1 = -3 m2 = 3
Absolute Value Functions Step 3: Use the slope to plot points vertex = (-2, -2) m1 = -3 m2 = 3
Homework p.90 #7-9, 22, 40, 44, 45