Target density Goran Skoro 12 November 2008. A Simple Model for Pion Yield from the Target Assume that the number of pions produced per proton hitting.

Slides:



Advertisements
Similar presentations
WP2: Targets Proposed Outline Work Programme Chris Densham.
Advertisements

DPA and Gas Production from Protons on W and Be Brian Hartsell.
Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta STFC Rutherford Appleton Laboratory, UK November-2008.
KT McDonald Target Studies Weekly Meeting July 10, Power Deposition in Graphite Targets of Various Radii K.T. McDonald, J. Back, N. Souchlas July.
Magnetic Configuration of the Muon Collider/ Neutrino Factory Target System Hisham Kamal Sayed, *1 H.G Kirk, 1 K.T. McDonald 2 1 Brookhaven National Laboratory,
LS-Dyna and ANSYS Calculations of Shocks in Solids Goran Skoro University of Sheffield.
1 Thermal Shock Measurements and Modelling for Solid High-Power Targets at High Temperatures J. R. J. Bennett 1, G. Skoro 2, S. Brooks 1, R. Brownsword,
Studies of solid high-power targets Goran Skoro University of Sheffield HPT Meeting May 01 – 02, 2008 Oxford, UK.
Modelling shock in solid targets Goran Skoro (UKNF Collaboration, University of Sheffield) NuFact 06 UC Irvine, August 24-30, 2006.
Particle Production of a Carbon/Mercury Target System for the Intensity Frontier X. Ding, UCLA H.G. Kirk, BNL K.T. McDonald, Princeton Univ MAP Spring.
Pion capture and transport system for PRISM M. Yoshida Osaka Univ. 2005/8/28 NuFACT06 at UCI.
Mercury Jet Studies Tristan Davenne Rutherford Appleton Laboratory Joint UKNF, INO, UKIERI meeting 2008 University of Warwick, Physics Department 3-4 April.
MC/NF TARGET SHIELDING STUDIES. NICHOLAS SOUCHLAS (10/29/2010)‏ 1.
1 Optical Diagnostic Results of Hg Jet Target and Post-Simulation H. Park, H. Kirk, K. McDonald Brookhaven National Laboratory Princeton University Stonybrook.
1 Meson Production Simulations X. Ding, D. B. Cline UCLA H. Kirk, J. S. Berg BNL N u F a c t th International Workshop on Neutrino Factories, Superbeams.
Optimization of Target Parameters for a Tungsten Target (Half Density) at 8GeV X. Ding Target Studies Nov. 2, 2010.
1 Muon Yield Comparisons for Different ICOOL Versions and Lattices X. Ding Front End, Nov. 23, 2010.
Harold G. Kirk Brookhaven National Laboratory Target Baseline IDS-NF Plenary CERN March 23-24, 2009.
 Stephen Brooks / UKNF meeting, Warwick, April 2008 Pion Production from Water-Cooled Targets.
IDS-NF Target Studies H. Kirk (BNL) July 8, 2009.
1 Comparison of Power Depositions X. Ding, D. B. Cline, UCLA H. Kirk, J. S. Berg, BNL Collaboration Meeting July 2, 2010.
Progress on Solid Target Studies J. R. J. Bennett Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX EUROnu and NF-IDS Target Meeting, CERN,
Comparison of Power Deposition in SC1 Coil Xiaoping Ding UCLA Target Studies Jun. 29, 2010.
1 3D Simulations for the Elliptic Jet W. Bo (Aug 12, 2009) Parameters: Length = 8cm Elliptic jet: Major radius = 0.8cm, Minor radius = 0.3cm Striganov’s.
Power Deposition in SC1 Coil Xiaoping Ding UCLA Target Studies Apr. 20, 2010.
Operated by Brookhaven Science Associates for the U.S. Department of Energy Optimized Parameters for a Mercury Jet Target X. Ding, D. Cline, UCLA, Los.
The MERIT experiment at the CERN PS Leo Jenner MOPC087 WEPP169 WEPP170.
SUPERCONDUCTING SOLENOIDS - SHIELDING STUDIES 3. NICHOLAS SOUCHLAS (10/28/2010)‏
Solid Target Options NuFACT’00 S. Childress Solid Target Options The choice of a primary beam target for the neutrino factory, with beam power of
Target and Absorbers L2 Manager: K McDonald, Princeton U March xx, 2013 Presenter’s Name | DOE Mini-Review of MAP (FNAL, March 4-6, 2013)1 Mission Target:
A. Kurup, I. Puri, Y. Uchida, Y. Yap, Imperial College London, UK R. B. Appleby, S. Tygier, The University of Manchester and the Cockcroft Institute, UK.
A powder jet target for a Neutrino Factory Ottone Caretta, Chris Densham (RAL), Tom Davies (Exeter University), Richard Woods (Gericke Ltd)
Meson Productions for Target System with GA/HG Jet and IDS120h Configuration X. Ding (Presenter), D. Cline, UCLA H. Kirk, J.S. Berg, BNL Muon Accelerator.
LS-Dyna and ANSYS Calculations of Shocks in Solids Goran Skoro University of Sheffield.
1 cm diameter tungsten target Goran Skoro University of Sheffield.
Institutional Logo Here Harold G. Kirk DOE Review of MAP (FNAL August 29-31, 2012)1 The Front End Harold Kirk Brookhaven National Lab August 30, 2012.
Progress on Solid Target Studies J. R. J. Bennett Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX 2 nd Oxford-Princeton High-Power Target.
ISIS Target studies Could a used ISIS target provide fusion relevant irradiated tungsten material properties? Tristan Davenne 20 th May nd Radiate.
Energy deposition for intense muon sources (chicane + the rest of the front end) Pavel Snopok Illinois Institute of Technology and Fermilab December 4,
Thermomechanical characterization of candidate materials for solid high power targets Goran Skoro, R. Bennett, R. Edgecock 6 November 2012 UKNF Target.
Optimizing DHCAL single particle energy resolution Lei Xia Argonne National Laboratory 1 LCWS 2013, Tokyo, Japan November , 2013.
1 Optical Diagnostic Results of MERIT Experiment and Post-Simulation H. Park, H. Kirk, K. McDonald Brookhaven National Laboratory Princeton University.
Secondary Particle Production and Capture for Muon Accelerator Applications S.J. Brooks, RAL, Oxfordshire, UK Abstract Intense pulsed.
Harold G. Kirk Brookhaven National Laboratory Target Considerations for Nufact and Superbeams ISS Meeting RAL April 26, 2006.
Reducing shock in the Neutrino Factory target Goran Skoro (University of Sheffield) UKNF Meeting 11 January 2006.
K. McDonald NFMCC Collaboration Meeting Jan 14, The Capture Solenoid as an Emittance-Reducing Element K. McDonald Princeton U. (Jan. 14, 2010)
1 of 12 Stephen Brooks JAI Advisory Board, February 2006  Neutrino Factory Muon Beam Production Studies.
Status of Scaling FFAG Phase Rotation ICOOL Simulations Ajit Kurup ISS Machine Group Meeting 27 th July 2006.
Anders Kirleis Stony Brook University The Design Of A Detector For The Electron Ion Collider.
UKNF 12 January 2005 Target Studies J R J Bennett RAL.
Studies on pion/muon capture at MOMENT Nikos Vassilopoulos IHEP, CAS August 11, 2015.
Harold G. Kirk Brookhaven National Laboratory Targetry Program Collaboration Meeting Columbia University June 11, 2003.
Particle Production with Carbon Target and IDS120j Configuration at 3 GeV (update) X. Ding, UCLA Target Studies Nov. 14, /14/13.
Kinetic Energy Spectra of pi +, pi -, mu +, mu - and sum of all from the 20to4T5m Configuration X. Ding Front End Meeting June 23,
Carbon Target Design and Optimization for an Intense Muon Source X. Ding, UCLA H.G. Kirk, BNL K.T. McDonald, Princeton Univ MAP Winter Collaboration.
Chicane shielding and energy deposition (IPAC’13 follow-up) Pavel Snopok IDS-NF phone meeting June 4, 2013.
Parameters of the NF Target Proton Beam pulsed10-50 Hz pulse length1-2  s energy 2-30 GeV average power ~4 MW Target (not a stopping target) mean power.
Shock Tests on Tantalum and Tungsten J. R. J. Bennett, S. Brooks, R. Brownsword, C. Densham, R. Edgecock, S. Gray, A. McFarland, G. Skoro and D. Wilkins.
IHEP/Protvino for FP420 R&D Collaboration 1 IHEP/Protvino Group: Igor Azhgirey Igor Bayshev Igor Kurochkin + one post-graduate student Tools:
Meson Production at Low Proton Beam Energy (Update) X. Ding, UCLA Target Studies May 9, /9/113.
ENG/BENE, ENG Plenary, 16 March 2005 The New UK Programme for Shock Studies J R J Bennett RAL.
Li-Lens length options for pion yield (OptiM tracking) V.Nagaslaev.
Positron production rate vs incident electron beam energy for a tungsten target
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
X. Ding, UCLA MAP Spring 2014 Meeting May 2014 Fermilab
Electricity and Magnetism
Parameters of the NF Target
Tertiary Collimators in IP1/IP5: Progress Report
11.4 Use Geometric Probability
Exam 2 review.
Presentation transcript:

Target density Goran Skoro 12 November 2008

A Simple Model for Pion Yield from the Target Assume that the number of pions produced per proton hitting the target is p and that the fraction of pions absorbed in the target is a. Then, the yield of pions for a solid target is, Y = p(1-a) and for a target of the same geometry and material but density f, is, Y f = fp(1-fa) The ratio, R = Y f /Y=f(1-fa)/(1-a) is shown here as f varies. N.B. No magnetic field. Acceptance not included. Roger Bennett’s model* *

Ratio of pion yields, R = Y(  target  /Y(  tungsten  Density ratio, f =  target /  tungsten Model vs. MARS simulations MARS: 10 GeV protons, parabolic beam, target length = 25 cm, target diameter = 2 cm. Yields are from target surface, not downstream.

John Back’s ICOOL probability acceptance map* * These pions vs. model? Case I: all pions Case II: forward pions TARGET p beam pions TARGET p beam pions

Model vs. MARS simulations – Case I TARGETp beam pions

Model vs. MARS simulations – Case I TARGETp beam pions

Model vs. MARS simulations – Case II TARGETp beam pions

Model vs. MARS simulations – Case II TARGETp beam pions