Eager Markov Chains Parosh Aziz Abdulla Noomene Ben Henda Richard Mayr Sven Sandberg TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A
Informationsteknologi Institutionen för informationsteknologi | Outline Introduction Expectation Problem Algorithm Scheme Termination Conditions Subclasses of Markov Chains Examples Conclusion
Informationsteknologi Institutionen för informationsteknologi | Introduction Model: Infinite-state Markov chains Used to model programs with unreliable channels, randomized algorithms… Interest: Conditional expectations Expected execution time of a program Expected resource usage of a program
Informationsteknologi Institutionen för informationsteknologi | Introduction Infinite-state Markov chain Infinite set of states Target set Probability distributions Example
Informationsteknologi Institutionen för informationsteknologi | Introduction Reward function Defined over paths reaching the target set Example
Informationsteknologi Institutionen för informationsteknologi | Expectation Problem Instance A Markov chain A reward function Task Compute/approximate the conditional expectation of the reward function
Informationsteknologi Institutionen för informationsteknologi | Expectation Problem Example: The weighted sum The reachability probability The conditional expectation *4+0.1*(-5)= = /0.9=3
Informationsteknologi Institutionen för informationsteknologi | Expectation Problem Remark Problem in general studied for finite-state Markov chains Contribution Algorithm scheme to compute it for infinite- state Markov chains Sufficient conditions for termination
Informationsteknologi Institutionen för informationsteknologi | Algorithm Scheme At each iteration n Compute paths up to depth n Consider only those ending in the target set Update the expectation accordingly Path Exploration
Informationsteknologi Institutionen för informationsteknologi | Algorithm Scheme Correctness The algorithm computes/approximates the correct value Termination Not guaranteed: lower-bounds but no upper- bounds
Informationsteknologi Institutionen för informationsteknologi | Termination Conditions Exponentially bounded reward function The intuition: limit on the growth of the reward functions Remark: The limit is reasonable: for example polynomial functions are exponentially bounded
Informationsteknologi Institutionen för informationsteknologi | Termination Conditions 0 The abs of the reward Bound on the reward
Informationsteknologi Institutionen för informationsteknologi | Termination Conditions Eager Markov chain The intuition: Long paths contribute less in the expectation value Remark: Reasonable: for example PLCS, PVASS, NTM induce all eager Markov chains
Informationsteknologi Institutionen för informationsteknologi | Termination Conditions 0 1 Prob. of reaching the target in more than n steps Bound on the probability
Informationsteknologi Institutionen för informationsteknologi | Termination Conditions Pf Ws Ce
Informationsteknologi Institutionen för informationsteknologi | Subclasses of Markov Chains Eager Markov chains Markov chains with finite eager attractor Markov chains with the bounded coarseness property NTM PVASS PLCS
Informationsteknologi Institutionen för informationsteknologi | Finite Eager Attractor Attractor: Almost surely reached from every state Finite eager attractor: Almost surely reached Unlikely to stay ”too long” outside of it A EA
Informationsteknologi Institutionen för informationsteknologi | Finite Eager Attractor EA 0 1 b Prob. to return in More than n steps
Informationsteknologi Institutionen för informationsteknologi | Finite Eager Attractor Finite eager attractor implies eager Markov chain?? Reminder: Eager Markov chain: Prob. of reaching the target in more than n steps
Informationsteknologi Institutionen för informationsteknologi | Finite Eager Attractor FEA Paths of length n that visit the attractor t times
Informationsteknologi Institutionen för informationsteknologi | Finite Eager Attractor Proof idea: identify 2 sets of paths Paths that visit the attractor often without going to the target set: Paths that visit the attractor rarely without going the target set:
Informationsteknologi Institutionen för informationsteknologi | Finite Eager Attractor Paths visiting the attractor rarely: t less than n/c FEA Pr_n
Informationsteknologi Institutionen för informationsteknologi | Finite Eager Attractor Paths visiting the attractor often: t greater than n/c FEA PtPl Po_n
Informationsteknologi Institutionen för informationsteknologi | Probabilistic Lossy Channel Systems (PLCS) Motivation: Finite-state processes communicating through unbounded and unreliable channels Widely used to model systems with unreliable channels (link protocol)
Informationsteknologi Institutionen för informationsteknologi | PLCS ab b Send c!a ab Receive c?b a c?b q0 q3q2 q1 nop c!a c!b aba Channel c nop
Informationsteknologi Institutionen för informationsteknologi | PLCS c?b q0 q3q2 q1 nop c!a c!b aba Channel c nop ab b Loss b b a a
Informationsteknologi Institutionen för informationsteknologi | PLCS Configuration Control location Content of the channel Example [q3,”aba”] c?b q0 q3q2 q1 nop c!a c!b aba Channel c nop
Informationsteknologi Institutionen för informationsteknologi | PLCS A PLCS induces a Markov chain: States: Configurations Transitions: Loss steps combined with discrete steps
Informationsteknologi Institutionen för informationsteknologi | PLCS Example: [q1,”abb”] [q2,”a”] By losing one of the messages ”b” and firing the marked step. Probability: P=Ploss*2/3 c?b q0 q3q2 q1 nop c!a c!b aba Channel c nop
Informationsteknologi Institutionen för informationsteknologi | PLCS Result: Each PLCS induces a Markov chain with finite eager attractor. Proof hint: When the size of the channels is big enough, it is more likely (with a probability greater than ½) to lose a message.
Informationsteknologi Institutionen för informationsteknologi | Bounded Coarseness The probability of reaching the target within K steps is bounded from below by a constant b.
Informationsteknologi Institutionen för informationsteknologi | Bounded Coarseness Boundedly coarse Markov chain implies eager Markov chain?? Reminder: Eager Markov chain: Prob. of reaching the target in more than n steps
Informationsteknologi Institutionen för informationsteknologi | Bounded Coarseness Prob. Reach. Within K steps KnK steps 2K PnP2 Pn:Prob. of avoiding the target in nK steps P1
Informationsteknologi Institutionen för informationsteknologi | Probabilistic Vector Addition Systems with states (PVASS) Motivation: PVASS are generalizations of Petri-nets. Widely used to model parallel processes, mutual exclusion program…
Informationsteknologi Institutionen för informationsteknologi | PVASS Configuration Control location Values of the variables x and y Example: [q1,x=2,y=0] q0 q3q2 q1 nop --x --y ++x ++y x
Informationsteknologi Institutionen för informationsteknologi | PVASS A PVASS induces a Markov chain: States: Configurations Transitions: discrete steps
Informationsteknologi Institutionen för informationsteknologi | PVASS Example: [q1,1,1] [q2,1,0] By taking the marked step. Probability: P=2/3 q0 q3q2 q1 nop --x --y ++x ++y x
Informationsteknologi Institutionen för informationsteknologi | PVASS Result: Each PVASS induces a Markov chain which has the bounded coarseness property.
Informationsteknologi Institutionen för informationsteknologi | Noisy Turing Machines (NTM) Motivation: They are Turing Machines augmented with a noise parameter. Used to model systems operating in ”hostile” environment
Informationsteknologi Institutionen för informationsteknologi | NTM Fully described by a Turing Machine and a noise parameter. q1 q3q2 q4 a/bb b # # RR R RR S S ab#b#aab
Informationsteknologi Institutionen för informationsteknologi | NTM q1 q3q2 q4 a/bb b # # RR R RR S S ab#b#aab Discret Step ab#b#aab bb#b#aab
Informationsteknologi Institutionen för informationsteknologi | NTM q1 q3q2 q4 a/bb b # # RR R RR S S ab#b#aab Noise Step ab#b#aab #b#b#aab
Informationsteknologi Institutionen för informationsteknologi | NTM Result: Each NTM induces a Markov chain which has the bounded coarseness property.
Informationsteknologi Institutionen för informationsteknologi | Conclusion Summary: Algorithm scheme for approximating expectations of reward functions Sufficient conditions to guarantee termination: Exponentially bounded reward function Eager Markov chains
Informationsteknologi Institutionen för informationsteknologi | Conclusion Direction for future work Extending the result to Markov decision processes and stochastic games Find more concrete applications
Thank you
Informationsteknologi Institutionen för informationsteknologi | PVASS Order on configurations: <= Same control locations Ordered values of the variables Example: [q0,3,4] <= [q0,3,5] q0 q3q2 q1 nop --x --y ++x ++y x
Informationsteknologi Institutionen för informationsteknologi | PVASS Probability of each step > 1/10 Boundedly coarse: parameters K and 1/10^K q0 q3q2 q1 nop --x --y ++x ++y x Target set K iterations