Mode, Median and Mean Great Marlow School Mathematics Department.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Homework Answers P. 570 P   28. 6 4. /9
AP STUDY SESSION 2.
1
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Objectives: Generate and describe sequences. Vocabulary:
Continuous Numerical Data
Whiteboardmaths.com © 2004 All rights reserved
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Exit a Customer Chapter 8. Exit a Customer 8-2 Objectives Perform exit summary process consisting of the following steps: Review service records Close.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 10 second questions
Welcome to Who Wants to be a Millionaire
ZMQS ZMQS
Solve Multi-step Equations
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Break Time Remaining 10:00.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
PP Test Review Sections 6-1 to 6-6
Bright Futures Guidelines Priorities and Screening Tables
Bellwork Do the following problem on a ½ sheet of paper and turn in.
2 |SharePoint Saturday New York City
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
VOORBLAD.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
BIOLOGY AUGUST 2013 OPENING ASSIGNMENTS. AUGUST 7, 2013  Question goes here!
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2012 National Heart Foundation of Australia. Slide 2.
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Sets Sets © 2005 Richard A. Medeiros next Patterns.
LO: Count up to 100 objects by grouping them and counting in 5s 10s and 2s. Mrs Criddle: Westfield Middle School.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Addition 1’s to 20.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Subtraction: Adding UP
Equal or Not. Equal or Not
Slippery Slope
Januar MDMDFSSMDMDFSSS
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Week 1.
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Clock will move after 1 minute
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Presentation transcript:

Mode, Median and Mean Great Marlow School Mathematics Department

Calculating the mode, median and mean for a grouped frequency distribution of discrete data A local shop sells mobile phones and keeps a record of the daily sales. The table shows these sales. The modal group is 15 – 19 phones. It is impossible to find the exact value of the median when the data has been grouped. It can be estimated by using interpolation. The total frequency Σf = 29 The position of the median is 29 + 1 = 15th value 2 To find this value, use a table with running values. Great Marlow School Mathematics Department

Estimating the median using interpolation Look at the group 10 – 14. The group is 5 numbers wide: 10, 11, 12, 13 and 14. The frequency is 4, so the group has 4 values in it. The 15th value is the 2nd of these 4 values. So the estimate would be 2 of the way through this group. 4 An estimate of the median = 10 + 2 x 5 = 12.5 Great Marlow School Mathematics Department

Estimating the mean Σf = 29 Σfx = 333 It is impossible to find the exact value of the mean when the data has been grouped. It can be estimated by using the mid-values of each group. The mid-values are ½(0 + 4) = 2, ½(5 + 9) = 7 and so on. To work out the mean add two extra columns to your table. Use the mid-values as the x values. Estimate of the mean: __ X = Great Marlow School Mathematics Department

Calculating the mode, median and mean for a grouped frequency distribution of continuous data You cannot give an exact value to continuous data because it is impossible to measure it exactly. Continuous data always has to be given to a chosen degree of accuracy. The groups for continuous data need some adjusting when working out means and medians. Measurements of time, weight height and speed are often given to the nearest unit. The groups for these are usually written like this: Great Marlow School Mathematics Department

This means 30.5 up to, but not including 40.5 You use 30.5 and 40.5 to work out the mid-value You use 30.5 as the beginning of the median calculations. 21 – 30 31 – 40 41 – 50 100 – 200 – 300 – This means 200 up to, but not including 300 You use 200 and 300 to work out the mid-value You use 200 as the beginning of the median calculation Special care is needed with age, if it is counted in completed years. This means 31 up to, but not including 41 You use 31 and 41 to work out the mid-value You use 31 as the beginning of the median calculation 21 – 30 31 – 40 41 – 50 Great Marlow School Mathematics Department

Sometimes algebra is used in a table to show the size of the group. 10 is not included in this group but 20 is included You use 10 and 20 to work out the mid-values You use 10 as the beginning of the median calculations 10 < x 20 10 is included in the group but 20 is not included You still use 10 and 20 to work out the mid-value You still use 10 as the beginning of the median calculations 10 X < 20

Example: The table shows the time in minutes, to the nearest minute, spent by people travelling to work. Estimate the median time spent travelling to work. The median is 44 / 2 = 22nd value An estimate for the median = 14.5 + 12/14 x (29.5 – 14.5) = 27.4 minutes to 1 d.p. Great Marlow School Mathematics Department

Write down the modal group. Exercise 3:4 Question 1 Dillon collects apples from the tree in his garden. He weighed each one and recorded the weight, to the nearest gm, in a table. Σf = Σfx = Write down the modal group. Estimate the mean weight, to the nearest gram, of Dillon’s apples. Estimate the median weight, to the nearest gram, of an apple in Dillon’s garden. Great Marlow School Mathematics Department

Exercise 3:4 Question 1 Dillon collects apples from the tree in his garden. He weighed each one and recorded the weight, to the nearest gm, in a table. Σf = 32 Σfx = 5276 Modal group = 161 – 180 gm __ X = (b) An estimate of the mean = 5276 = 164.875 = 165 gm (c) The median is the = 33/2 = 16.5 = 17th value An estimate of the median =160.5 + 3/9 x (180 – 161) = 166.8 gms Great Marlow School Mathematics Department

Question 2: Carla measures the height of pupils in her class in cm Question 2: Carla measures the height of pupils in her class in cm. The table gives her measurements. Σf = Σfx = For the pupils in Carla’s class: Write down the modal group. Estimate the mean height to the nearest centimetre. Estimate the median height to the nearest centimetre. Great Marlow School Mathematics Department

Question 2: Carla measures the height of pupils in her class in cm Question 2: Carla measures the height of pupils in her class in cm. The table gives her measurements. Σf = 28 Σfx = 3620 110 ≤ x < 120 The modal group = An estimate of the mean = 3620/28 = 129.28 cm = 129.3 cm The median is the 29/2 = 14.5 = 15th value An estimate of the median = 120 + 5/6 x (130 – 120) = 128.3 cm Great Marlow School Mathematics Department