Architectural Pattern of an Animal

Slides:



Advertisements
Similar presentations
Morphology General Zoology, 24 January 2011 Donald Winslow
Advertisements

Classification, Phylogeny, & Organization
ANIMAL DIVERSITY. YOU MUST KNOW… THE CHARACTERISTICS OF ANIMALS THE STAGES OF ANIMAL DEVELOPMENT HOW TO SORT THE ANIMAL PHYLA BASED ON SYMMETRY, DEVLOPMENT.
ANIMAL DIVERSITY.
Kingdom Animalia Zoology – the study of animals. Summary Animals are multicellular and eukaryotic. consume and digest organic materials thereby being.
1 Overview of Animal Diversity Chapter General Features of Animals Heterotrophs Multicellular Able to move from place to place Diverse in form and.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 Animal Architecture.
Animal Architecture Levels of organization in organismal complexity.
Introduction to Kingdom Animalia
UNIT 15: ANIMAL KINGDOM. What characteristics are common to all animals?  Eukaryotic cells  NO cell wall  Multicellular  Cell specialization  Heterotrophic.
Introduction to Animals
Chapter 32 – Animal Diversity
Animal Body Plans Chapter 3, Zoology.
9-1 CHAPTER 9 Architectural Pattern of an Animal.
Overview of Animal Diversity
Kingdom Animalia Multicellular, heterotrophic eukaryotes
Which numbers represent chordates and which numbers represent invertebrates?
23.1 Animal Characteristics Animals Animal Characteristics Multicellular Heterotrophic Lack cell walls Sexual Reproduction Movement Specialization.
31.3 The Animal Body Plan has Undergone Many Changes
Introduction to the Animal Kingdom
ANIMAL KINGDOM. Main Characteristics Multicellular eukaryotes Heterotrophs Specialized cells; most have tissues Response to stimuli by nervous and muscular.
Characteristics of animals Feeding- Must consume food. Does not produce it’s own food. Heterotrophic Respiration- Takes in oxygen and gives off CO2 Circulation-Has.
Introduction to Animals. General Characteristics All animals are heterotrophic Different digestive systems Animals are either invertebrates or vertebrates.
Evolution of Animal Body Plans
Animal Diversity KEY FEATURES OF BODY PLANS ABBOTTS COLLEGE PAGE 73.
Chapter 26 Introduction to the Animal Kingdom. What is an animal?  A. All heterotrophs  B. Multicellular  C. Eukaryotic cells  D. Do not have a.
Characteristics of animals Feeding- Must consume food. Does not produce it’s own food. Heterotrophic Respiration- Takes in oxygen and gives off CO2 Circulation-Has.
Animal Origins Bringing it all together –History of Life –Basic Animal Body Plan –Animal Groups: Understanding evolutionary relationships among phyla of.
An Introduction to Animal Diversity Chapter 32. Characteristics of Animals Multi-cellular Heterotrophic eukaryotes - ingestion Lack cell walls – collagen.
Chapter 32. Characteristics that Define Animals Nutritional modes Ingest organic molecules and digest them via enzymes Cell structure and specialization.
Animal Body Plans Adapted fromhttp://userwww.sfsu.edu/~biol240 /labs/lab_16animalbodyplan/pages/bo dyplan.html.
Objective: Intro to Animal Diversity. Heterotrophs that ingest food Multicellular with structural proteins Develop from embryonic layers Animal Characteristics.
Animal Form and Function Chapter 32. What you need to know! The characteristics of animals. The stages of animal development How to sort the animal phyla.
Chapter 32 An Introduction to Animal Diversity. Modes of Nutrition Animals differ in their mode of nutrition than plants and fungi. –Animals and fungi.
9-1 CHAPTER 9 Architectural Pattern of an Animal.
Introduction to Animal Diversity Packet #76 Chapter #32.
The Animal Kingdom. Anatomical Positions ANTERIOR POSTERIOR DORSAL VENTRAL.
Intro to Animal Diversity Chapter 32. Slide 2 of 17 Animalia – General Notes  1.3 million species  300K plant species  1.5 million fungi  >10 million.
Animals Animal Bodies.
What is an Animal? Chapter 25. Characteristics of Animals Animals obtain food  Sessile – Organisms that are permanently attached to a surface  Sessile.
Prepared by : Alaa Omar Shada Sara Hamdi Alswearki.
Chapter 32 Introduction to Animal Diversity. Animal Characteristics 1.) All are heterotrophs & must ingest food to digest it. 2.) All eukaryotic and multicellular.
9-1 CHAPTER 9 Architectural Pattern of an Animal.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. ANIMAL ARCHITECTURE Chapter
Architectural Pattern of an Animal Chapter 9. The Appearance of Major Body Plans The Cambrian explosion marks the earliest fossil appearance of all major.
Animal Architecture. Structure Hierarchy Cell  Tissue  Organ  Organ System.
 Heterotrophs  Kingdom animalia  Multicellular  Eukaryotic  Cells lack cell walls.
An Introduction to Animal Diversity
9-1 CHAPTER 9 Architectural Pattern of an Animal.
Domain: Eukarya Kingdom: Animalia Evolutionary trends among organisms within the Kingdom Animalia.
The Animal Kingdom. Anatomical Positions ANTERIOR POSTERIOR DORSAL VENTRAL.
Overview: Welcome to Your Kingdom
Overview of Animal Diversity
Animal Body Plans Chapter 3, Zoology.
Tissue Complexity Most animals have closely functioning tissues.
Introduction to Animals
Chapter 9 Architectural Patterns of An Animal
Stages of Animal Development and Body Form.
Protostome Animals(animals that form mouth first)
Introduction to Animal Diversity
An introduction to animal diversity
Introduction to the Animal Kingdom
What is An Animal?.
Kingdom Animalia.
5 5 levels of organization:
Characteristics of Animals
Architectural Pattern of an Animal
Chapter 9: Architectural Pattern of an Animal Metazoans
Chapter 7 Part 2 Notes.
Presentation transcript:

Architectural Pattern of an Animal Chapter 9

The Appearance of Major Body Plans The Cambrian explosion marks the earliest fossil appearance of all major groups of living animals plus some groups that are only known from fossils. All major body plans appeared at this time. Result of extensive selection. Are limiting determinant of future adaptational variants.

Body Plans One way in which zoologists categorize the diversity of animals is according to general features of morphology and development. A group of animal species that share the same level of organizational complexity is known as a grade.

Hierarchical Organization – 5 Levels Protoplasmic grade of organization – protists are the simplest eukaryotes, but they still carry out life functions and show division of labor among the various cell structures. Metazoans are multicellular animals that have cells specialized for particular functions. This is the Cellular grade of organization. Shown by the simplest metazoans – Volvox, sponges.

Hierarchical Organization – 5 Levels Cell-tissue Grade – Usually, specialized cells are grouped together and perform their common function as a coordinated unit, a tissue. Jellyfish Tissue-organ Grade – Tissues are then assembled into organs like the heart (primarily muscle tissue, but connective, nervous, and epithelial also present). Flatworms

Hierarchical Organization – 5 Levels Organ-system grade – In the highest level of organization, organs work together as organ systems like the circulatory system.

Animal Body Plans Body plans are constrained by ancestry, major features may become modified, but are rarely lost. Animal body plans differ in their grade of organization, body symmetry, number of germ layers, and type of body cavity.

Symmetry Spherical symmetry occurs when any plane passing through the center divides the body into mirror image halves. Mostly found among the protists.

Symmetry Radial symmetry applies when more than two planes passing through the longitudinal axis can divide the organism into mirror image halves. Jellyfish Biradial symmetry – two planes will divide the organism. Comb jellies

Radiata The Cnidarians (jellyfish, corals & sea anemones) and Ctenophores (comb jellies), the radial or biradial animals, comprise the Radiata. No front/back Weak swimmers Can interact with environment in all directions.

Symmetry Bilateral symmetry is found in organisms where one plane can pass through the organism dividing it into right and left halves. Better for directional movement. Monophyletic group called Bilateria.

Cephalization Bilateral symmetry is associated with cephalization, differentiation of a head. Nervous tissue, sense organs, and often the mouth are located in the head. Advantages for organisms moving head first – directional movement. Elongation along anteroposterior axis.

Regions of a Bilaterally Symmetrical Animal Anterior-posterior (transverse plane) Dorsal-ventral (frontal plane) Left-right (sagittal plane) Proximal-distal Medial-lateral

Body Cavities Examples of body cavities include the gut, blastocoel, and a pseudocoel or coelom. The gut forms from the archenteron during gastrulation. The blastocoel persists in some, but usually fills with mesoderm. Pseudocoel and coelom are fluid filled body cavities that cushion organs and provide support.

Body Cavities In protostomes, mesoderm forms as endodermal cells from near the blastopore migrate into the blastocoel. Three body plans possible: Acoelomate (no body cavity) Pseudocoelomate (body cavity between endoderm & mesoderm) Coelomate (body cavity surrounded by mesoderm)

Body Cavities Coeloms surrounded by mesoderm can arise in two ways: Schizocoely – mesodermal cells fill the blastocoel, forming a solid band of tissue around the gut, then a space opens inside the mesodermal band. Enterocoely – portions of the gut lining form pockets that pinch off and form a ring of mesoderm.

Developmental Patterns Sponges develop only to blastula stage, then reorganize to form adult. Gastrulation allows animals to proceed to tissue level organization. Diploblastic – 2 germ layers Cnidarians, Ctenophores Triploblastic – 3 germ layers

Other Key Features of Body Plans In some organisms, the gut does not form a complete tube. Waste must come back out the mouth. Food must be digested & waste expelled before eating again. A complete gut forms a tube within a tube body plan.

Other Key Features of Body Plans Segmentation is a serial repetition of similar body segments along the body. Each segment is a metamere or somite. May include external & internal components. Obscured in many animals, like humans. Permits greater body mobility and complexity of structure & function.

Components of Metazoan Bodies Extracellular Components - noncellular components of metazoan animals: Body fluids Extracellular structural elements

Tissue Structure and Function Cellular Components - Tissues A tissue is a group of similar cells specialized for performing a common function. Different types of tissues have different structures that are suited to their functions. Tissues are classified into four main categories: Epithelial Connective Muscle Nervous

Epithelial Tissue Epithelial tissue covers the outside of the body and lines organs and cavities within the body. Squamous, cuboidal, columnar. Simple vs. stratified.

Connective Tissue Connective tissue functions mainly to bind and support other tissues. Contains sparsely packed cells scattered throughout an extracellular matrix.

Muscle Tissue Muscle tissue is composed of long cells called muscle fibers capable of contracting in response to nerve signals. Smooth Skeletal Cardiac

Nervous Tissue Nervous tissue senses stimuli and transmits signals throughout the animal. A neuron (nerve cell) receive signals at the dendrites and send them out via the axons.

Complexity and Body Size Increased complexity allows for an increase in body size. Larger size decreases the surface area to volume ratio. Necessitates complex systems for respiration, nutrition, and excretion – diffusion not adequate. Buffers environmental fluctuation. Escape predators.

Complexity and Body Size Cost of maintaining body temperature is less per gram of body weight than in small animals. Energy costs of moving a gram of body weight over a given distance less for larger animals.