Identify the number of solutions of an equation

Slides:



Advertisements
Similar presentations
Solve an equation by multiplying by a reciprocal
Advertisements

Example 1 Solve ax b c for x. Then use the solution to solve Solve a literal equation + = += 2x SOLUTION STEP 1 Solve ax b c for x. += ax b c Write.
EXAMPLE 4 Solve proportions SOLUTION a x 16 = Multiply. Divide each side by 10. a x 16 = = 10 x5 16 = 10 x80 = x8 Write original proportion.
3-5 Solving Equations with the variable on each side Objective: Students will solve equations with the variable on each side and equations with grouping.
Solve an equation with variables on both sides
Solve an equation by combining like terms
EXAMPLE 1 Solve a quadratic equation having two solutions Solve x 2 – 2x = 3 by graphing. STEP 1 Write the equation in standard form. Write original equation.
Solve an absolute value equation EXAMPLE 2 SOLUTION Rewrite the absolute value equation as two equations. Then solve each equation separately. x – 3 =
Write reasons for each step
Solve an equation using subtraction EXAMPLE 1 Solve x + 7 = 4. x + 7 = 4x + 7 = 4 Write original equation. x + 7 – 7 = 4 – 7 Use subtraction property of.
Standardized Test Practice
Step 1: Simplify Both Sides, if possible Distribute Combine like terms Step 2: Move the variable to one side Add or Subtract Like Term Step 3: Solve for.
EXAMPLE 1 Collecting Like Terms x + 2 = 3x x + 2 –x = 3x – x 2 = 2x 1 = x Original equation Subtract x from each side. Divide both sides by x2x.
Standardized Test Practice
EXAMPLE 3 Solve an equation by factoring Solve 2x 2 + 8x = 0. 2x 2 + 8x = 0 2x(x + 4) = 0 2x = 0 x = 0 or x + 4 = 0 or x = – 4 ANSWER The solutions of.
Standardized Test Practice
An equation is a mathematical statement that two expressions are equivalent. The solution set of an equation is the value or values of the variable that.
1. solve equations with variables on both sides. 2. solve equations containing grouping symbols. 3.5 Objectives The student will be able to:
Solve Equations with Variables on Both Sides
2.5 Solve Equations with variables on Both Sides
EXAMPLE 2 Rationalize denominators of fractions Simplify
EXAMPLE 1 Solve an equation with variables on both sides 7 – 8x = 4x – 17 7 – 8x + 8x = 4x – x 7 = 12x – = 12x Write original equation. Add.
1.4 Solving Equations ●A variable is a letter which represents an unknown number. Any letter can be used as a variable. ●An algebraic expression contains.
2.5 Solving equations with variables on both sides
Ch 2.5 Variable on Both Sides Objective: To solve equations where one variable exists on both sides of the equation.
Martin-Gay, Beginning Algebra, 5ed Using Both Properties Divide both sides by 3. Example: 3z – 1 = 26 3z = 27 Simplify both sides. z = 9 Simplify.
Warm up Simplify: -(2x + 3) + 4(x + 2) A – 2 – ( 3 + a) Solve: 13m – 22 = 9m -6.
Solve an equation by combining like terms EXAMPLE 1 8x – 3x – 10 = 20 Write original equation. 5x – 10 = 20 Combine like terms. 5x – =
Solve a two-step inequality EXAMPLE 1 3x – 7 < 8 Write original inequality. 3x < 15 Add 7 to each side. x < 5 Divide each side by 3. ANSWER The solutions.
3.2 Solving Equations by Using Addition and Subtraction Addition Property of Equality –If the same number is added to each side of an equation, the resulting.
Solve Multi-Step Equations
Multi-Step Equations We must simplify each expression on the equal sign to look like a one, two, three step equation.
Lesson 2 Contents Example 1Solve a Two-Step Equation Example 2Solve Two-Step Equations Example 3Solve Two-Step Equations Example 4Equations with Negative.
Solve an equation using addition EXAMPLE 2 Solve x – 12 = 3. Horizontal format Vertical format x– 12 = 3 Write original equation. x – 12 = 3 Add 12 to.
EXAMPLE 1 Solve by equating exponents Rewrite 4 and as powers with base Solve 4 = x 1 2 x – 3 (2 ) = (2 ) 2 x – 3x – 1– 1 2 = 2 2 x– x + 3 2x =
Example 1 Solving Two-Step Equations SOLUTION a. 12x2x + 5 = Write original equation. 112x2x + – = 15 – Subtract 1 from each side. (Subtraction property.
1. solve equations with variables on both sides. 2. solve equations containing grouping symbols. Objectives The student will be able to:
One Answer, No Answers, or an Infinite Number of Answers.
Use the substitution method
Solve Linear Systems by Substitution January 28, 2014 Pages
Solve Linear Systems by Substitution Students will solve systems of linear equations by substitution. Students will do assigned homework. Students will.
2.4 Equations with Variables on Both Sides To solve an equation with variables on both sides, you must use the Addition or Subtraction Properties of Equality.
Identities, Contradictions and Conditional Equations.
Opener (5 + 6) • 2 a + (b + c) + (d • e) 18k x2 + 5x + 4y + 7
§ 2.3 Solving Linear Equations. Martin-Gay, Beginning and Intermediate Algebra, 4ed 22 Solving Linear Equations Solving Linear Equations in One Variable.
Substitution Method: Solve the linear system. Y = 3x + 2 Equation 1 x + 2y=11 Equation 2.
Rewrite a linear equation
Objectives The student will be able to:
Example: Solve the equation. Multiply both sides by 5. Simplify both sides. Add –3y to both sides. Simplify both sides. Add –30 to both sides. Simplify.
Solving Equations with the Variable on Each Side
Solve a literal equation
Solve an equation by multiplying by a reciprocal
Solve a quadratic equation
One-Step Equations with Subtraction
Objectives The student will be able to:
Objective Solve equations in one variable that contain variable terms on both sides.
Solve an equation by combining like terms
Equations with Variables on Both Sides Day 2
1.3 Solving Linear Equations
EXAMPLE 4 Standardized Test Practice SOLUTION
Example 1: Equations with Variables on Each Side
- Finish Unit 1 test - Solving Equations variables on both sides
Objective Solve equations in one variable that contain variable terms on both sides.
Solve an inequality using subtraction
Algebra 1 Section 2.7.
2-3 Equations With Variables on Both Sides
2-5 Solving Equations with the Variable on Each Side
Definition of logarithm
EXAMPLE 4 Solve proportions Solve the proportion. ALGEBRA a x 16
Skill Check Lesson Presentation Lesson Quiz.
Presentation transcript:

Identify the number of solutions of an equation EXAMPLE 4 Identify the number of solutions of an equation Solve the equation, if possible. a. 3x = 3(x + 4) b. 2x + 10 = 2(x + 5) SOLUTION a. 3x = 3(x + 4) Original equation 3x = 3x + 12 Distributive property The equation 3x = 3x + 12 is not true because the number 3x cannot be equal to 12 more than itself. So, the equation has no solution. This can be demonstrated by continuing to solve the equation.

Identify the number of solutions of an equation EXAMPLE 4 Identify the number of solutions of an equation 3x – 3x = 3x + 12 – 3x Subtract 3x from each side. 0 = 12 Simplify. ANSWER The statement 0 = 12 is not true, so the equation has no solution.

Identify the number of solutions of an equation EXAMPLE 1 EXAMPLE 4 Identify the number of solutions of an equation b. 2x + 10 = 2(x + 5) Original equation 2x + 10 = 2x + 10 Distributive property ANSWER Notice that the statement 2x + 10 = 2x + 10 is true for all values of x.So, the equation is an identity, and the solution is all real numbers.

GUIDED PRACTICE for Example 4 8. 9z + 12 = 9(z + 3) SOLUTION Original equation 9z + 12 = 9z + 27 Distributive property The equation 9z + 12 = 9z + 27 is not true because the number 9z + 12 cannot be equal to 27 more than itself. So, the equation has no solution. This can be demonstrated by continuing to solve the equation.

The statement 12 = 27 is not true, so the equation has no solution. GUIDED PRACTICE for Example 4 9z – 9z + 12 = 9z – 9z + 27 Subtract 9z from each side. 12 = 27 Simplify. ANSWER The statement 12 = 27 is not true, so the equation has no solution.

GUIDED PRACTICE for Example 4 9. 7w + 1 = 8w + 1 SOLUTION – w + 1 = 1 Subtract 8w from each side. – w = 0 Subtract 1 from each side. ANSWER w = 0

GUIDED PRACTICE for Example 4 10. 3(2a + 2) = 2(3a + 3) SOLUTION Original equation 6a + 6 = 6a + 6 Distributive property ANSWER The statement 6a + 6 = 6a + 6 is true for all values of a. So, the equation is an identity, and the solution is all real numbers.