UNIT – 6 PRIVACY AND SECURITY. Software Complexity.

Slides:



Advertisements
Similar presentations
Spring 2000CS 4611 Security Outline Encryption Algorithms Authentication Protocols Message Integrity Protocols Key Distribution Firewalls.
Advertisements

Internet and Intranet Protocols and Applications Lecture 9a: Secure Sockets Layer (SSL) March, 2004 Arthur Goldberg Computer Science Department New York.
By: Mr Hashem Alaidaros MIS 326 Lecture 6 Title: E-Business Security.
1 Supplement III: Security Controls What security services should network systems provide? Confidentiality Access Control Integrity Non-repudiation Authentication.
6/3/2015topic1 Web Security Qiang Yang Simon Fraser University Thanks: Francis Lau (HKU)
Client/Server Computing Model of computing in which very powerful personal computers (clients) are connected in a network with one or more server computers.
ECOMMERCE TECHNOLOGY SUMMER 2002 COPYRIGHT © 2002 MICHAEL I. SHAMOS Cryptographic Security.
ECOMMERCE TECHNOLOGY FALL 2003 COPYRIGHT © 2003 MICHAEL I. SHAMOS Cryptography.
8-1 What is network security? Confidentiality: only sender, intended receiver should “understand” message contents m sender encrypts message m receiver.
Security Chapter The security environment 9.2 Basics of cryptography 9.3 User authentication 9.4 Attacks from inside the system 9.5 Attacks from.
EECC694 - Shaaban #1 lec #16 Spring Properties of Secure Network Communication Secrecy: Only the sender and intended receiver should be able.
Overview of Cryptography and Its Applications Dr. Monther Aldwairi New York Institute of Technology- Amman Campus INCS741: Cryptography.
Introduction to Public Key Infrastructure (PKI) Office of Information Security The University of Texas at Brownsville & Texas Southmost College.
Network Security – Part 2 V.T. Raja, Ph.D., Oregon State University.
E- Business Digital Signature Varna Free University Prof. Teodora Bakardjieva.
Encryption Methods By: Michael A. Scott
Chapter 8.  Cryptography is the science of keeping information secure in terms of confidentiality and integrity.  Cryptography is also referred to as.
Encryption. Introduction Computer security is the prevention of or protection against –access to information by unauthorized recipients –intentional but.
Digital Signature Xiaoyan Guo/ Xiaohang Luo/
INTRODUCTION Why Signatures? A uthenticates who created a document Adds formality and finality In many cases, required by law or rule Digital Signatures.
Chapter 31 Network Security
31.1 Chapter 31 Network Security Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
DNSSEC Cryptography Review Track 2 Workshop July 3, 2010 American Samoa Hervey Allen.
1 Introduction to Security and Cryptology Enterprise Systems DT211 Denis Manley.
Networks and Security. Types of Attacks/Security Issues  Malware  Viruses  Worms  Trojan Horse  Rootkit  Phishing  Spyware  Denial of Service.
E-Commerce Security Technologies : Theft of credit card numbers Denial of service attacks (System not availability ) Consumer privacy (Confidentiality.
569 Semantic Web. Dr. J. Lu University of windsor, Project Presentation Encrypted Web service application Encrypted Web Application Presented by:
Protecting Internet Communications: Encryption  Encryption: Process of transforming plain text or data into cipher text that cannot be read by anyone.
Cryptography, Authentication and Digital Signatures
E-Commerce Security Professor: Morteza Anvari Student: Xiaoli Li Student ID: March 10, 2001.
©The McGraw-Hill Companies, Inc., 2000© Adapted for use at JMU by Mohamed Aboutabl, 2003Mohamed Aboutabl1 1 Chapter 29 Internet Security.
Security Protocols and E-commerce University of Palestine Eng. Wisam Zaqoot April 2010 ITSS 4201 Internet Insurance and Information Hiding.
CSCD 218 : DATA COMMUNICATIONS AND NETWORKING 1
Types of Electronic Infection
Chapter 31 Cryptography And Network Security Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
ITIS 1210 Introduction to Web-Based Information Systems Chapter 50 Cryptography, Privacy, and Digital Certificates.
Network Security Jiuqin Wang June, 2000 Security & Operating system To protect the system, we must take security measures at two levels: Physical level:
Chapter 16 Security Introduction to CS 1 st Semester, 2012 Sanghyun Park.
Internet Security. 2 PGP is a security technology which allows us to send that is authenticated and/or encrypted. Authentication confirms the identity.
11-Basic Cryptography Dr. John P. Abraham Professor UTPA.
Advanced Database Course (ESED5204) Eng. Hanan Alyazji University of Palestine Software Engineering Department.
Chapter 8 – Network Security Two main topics Cryptographic algorithms and mechanisms Firewalls Chapter may be hard to understand if you don’t have some.
Upper OSI Layers Natawut Nupairoj, Ph.D. Department of Computer Engineering Chulalongkorn University.
31.1 Chapter 31 Network Security Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Lecture 2: Introduction to Cryptography
31.1 Chapter 31 Network Security Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
COSC 513 Operating Systems Project Presentation: Internet Security Instructor: Dr. Anvari Student: Ying Zhou Spring 2003.
CRYPTOGRAPHY. WHAT IS PUBLIC-KEY ENCRYPTION? Encryption is the key to information security The main idea- by using only public information, a sender can.
Encryption. Introduction The incredible growth of the Internet has excited businesses and consumers alike with its promise of changing the way we live.
Encryption Basics Module 7 Section 2. History of Encryption Secret - NSA National Security Agency –has powerful computers - break codes –monitors all.
Network Security Continued. Digital Signature You want to sign a document. Three conditions. – 1. The receiver can verify the identity of the sender.
Electronic Commerce School of Library and Information Science PGP and cryptography I. What is encryption? Cryptographic systems II. What is PGP? How does.
Chapter 40 Network Security (Access Control, Encryption, Firewalls)
© Copyright 2009 SSLPost 01. © Copyright 2009 SSLPost 02 a recipient is sent an encrypted that contains data specific to that recipient the data.
Privacy and Security Topics From Greenlaw/Hepp, In-line/On-line: Fundamentals of the Internet and the World Wide Web 1 Introduction Known Information Software.
Security By Meenal Mandalia. What is ? stands for Electronic Mail. much the same as a letter, only that it is exchanged in a different.
CRYPTOGRAPHY Cryptography is art or science of transforming intelligible message to unintelligible and again transforming that message back to the original.
Firewalls and Tunneling Firewalls –Acts as a barrier against unwanted network traffic –Blocks many communication channels –Can change the design space.
Security Outline Encryption Algorithms Authentication Protocols
Computer Communication & Networks
Chapter 9 Security 9.1 The security environment
Introduction to security goals and usage of cryptographic algorithms
Cryptography.
Topic 1: Data, information, knowledge and processing
NET 311 Information Security
The Secure Sockets Layer (SSL) Protocol
NET 311 Information Security
Presentation transcript:

UNIT – 6 PRIVACY AND SECURITY

Software Complexity

Contributing Factors Due to the inherent complexity of large software systems, such as those used for the internet, it is difficult to make them completely secure & error- free. By their very nature, they could have a no. of susceptible points. Program Size : A browser may consists of as many as lines of source code. The latest browser may contain even more features, resulting in even larger programs. The executable file for a browser is usually on the order of 5 to 7 megabytes. It is very difficult to eliminate all errors in such an immense program.

Continued.. Software Interfaces : The need for browsers to interface with other software creates an even larger code base & more potential problems areas. Market Forces : Products must often be hurried to market in order to maintain a competitive edge. It is often challenging to test all parts of them thoroughly before release. One reason why new versions of large software systems come out so frequently is that bugs are addressed in newer releases.

Encryption Schemes Encryption Schemes

Basic Conepts An encryption scheme is a method of encoding information. By using encryption scheme, a plain text can be converted into an encrypted version of same message. The encrypted version is called ciphertext and the encryption scheme is called cipher.

Concepts of Plaintext, Cipher, and Ciphertext Plaintext Cipher Ciphertext l Buy 1,000 shares of IGCO now Zabxyabc egtum pa wclfp

Continued.. We can not make sense of ciphertext without knowing the cipher and the encryption key. The goal of encryption schemes in most cases is to develop a scheme that allows information to be exchanged securely between two parties.

Illustration of an Encrypted Message Sent from Sender to Receiver Plaintext private key spy intercepts ciphertext cipher text arrives Private key My bank account no. is 47 Processed by cipher Paqmcx rtuw foolrg mu Decrypt My bank account no. is 47 What does paqqmcx rtuw foolrg mu mean? n/w A B Send ciphertext Plaintext

Continued.. In the above diagram sender A encrypts the plaintext message of My bank account no. is 47 To a cipher text of paqmcx rtuw foolrg mu Sender A sends the ciphertext over the network to B. While the message is being transmitted, a spy or hacker intercepts(obtains a copy of the message) it; the message is still transmitted to receiver B. If the cipher sender A is using is secure, spy will have a difficult time understanding the message. When B receives the message, he decrypts it, using the scheme he and party A had previously agreed to. Party B then determines the plaintext of the ciphertext.

Private Key Cryptography In private key cryptography, both the sender & the receiver share the same private key. Both the key & the encryption scheme is used to encrypt the plaintext & also to decrypt the ciphertext. The key must be kept private(secure) to ensure the system security. If a spy obtains the key, they too will likely be able to decrypt encoded message. Private key cryptography provides confidentiality.

Continued.. A simple example of private key cryptography: Suppose party A wants to send a message: meet me at the roadhouse at the noon urgent to party B. The Cipher that is used is: a) Write down the characters of plaintext in rows. b) Each row will contain the no. of characters equals to the private keys value. c) Here lets say the private key is 5. d) So each row will contain 5 characters. e) The ciphertext is then constructed by listing the characters in order in which they appear in the columns.

Continued.. By applying the cipher to the plaintext we obtains the following row-format of the message: meetm eatth eroad house atnoo nurge nt Now by listing the characters column wise we can obtain the following ciphertext: meehannearotutetounrttasogmhdeoe

Continued.. When party B receives the ciphertext, it decrypts it using the private key, 5. First, party B counts the no. of characters in the ciphertext, which in this case is 32. Since there are 5 characters per row, based on the agreed-upon cipher and key. Party B realizes that the message is 7 rows long– six full rows and one row containing 2 characters. Party B writes down the message column wise. And then read the text row-by-row, and obtains the following text: meetm eatth eroad house atnoo nurge nt Reading from left to right, party B is able to determine the original message. If a spy knew the cipher and the private key, he or she could also decrypt the intercepted message.

Public Key Cryptography o Public key cryptography is used to address one of the major security issue that is problem of authentication. o When party B receives a message, how can it be sure that party A sent it? That is, how can it be sure that the message is authentic. o In public key cryptographic systems, every person that intends to send a message has a private key. o In addition every person has a public key that matches up with their private key. o The private is used to encrypt messages, and those messages can only be decrypted using the matching public key. o As the name implies, public keys are not kept secret.

Continued.. Suppose party A sends B a message that it has encrypted using its private key. When B receives the ciphertext, it tries to decrypt it using As public key, which is available to everyone. If B is able to decrypt the message, it knows that it must have come from A. Because As public key can only decrypt messages encrypted by her private key, and only A knows her private key. Notice that if As message has been intercepted, anyone could have decrypt it by using her public key. Privacy is not provided by public key cryptography, only authentication.

Hashing Algorithms Hashing algorithms are used to verify message integrity. Suppose A sent B a message & it was intercepted. The person that intercepted the message might be able to alter its contents before passing it along. A way to verify that the message received is the same as the message sent involves the use of hashing algorithms. A hashing algorithm takes a plaintext message as input and then computes a value based on that message. The length of the computed value is usually much shorter than the length of the original message.

Continued.. For example, we will define a very simple hashing algorithm. Our hashing algorithm will multiply the no. of as, es, and hs in the message and will then add the no. of o,s to this value. Suppose the message is the combination to the safe is two, seven + thirty-five The hash or message digest of this message, using our simple hashing algorithm, is as follows: (2*6*3)+4 = 40 The message digest or hash of the plain text is sent to B along with the ciphertext. After B decrypts the message, he computes its hash using the agreed upon hashing algorithm. If the hash value sent by A does not match with the hash value of decrypted message, B will know that the message has been altered.

Secure Web Documents If you notice a broken skeleton key or an unlocked padlock displayed in the lower-left corner of the browser window, you are looking at icons that indicate that this document is not secure. Most documents on the web are not secure. When the skeleton key is whole or the padlock is locked, you are looking at a secure document. Secure documents require a secure server, which is a server that uses encryption schemes. The URL for a secure document usually begins with https, rather than http, where the s means secure. When a client requests a secure document, the server must first determine if they have the permission required to retrieve the document.

Continued.. The authentication process may require the use to submit a password. The server and the client must agree on an encryption scheme, so that all the messages(including passwords) can be transmitted securely. A high level of security can thus be achieved on the web, using the encryption schemes currently available. As an example, if you are using a server that is not secure, and you enter a credit card no., it is possible that it could be intercepted. If the credit card no. were not encrypted & the no. were intercepted, someone can steal & use the no.

Digital Signature In todays electronic world, many confidential &important messages are sent via computer. A digital signature is a mechanism that can be used to sign an electronic document officially. Because digital signatures are difficult to forge, documents that contains these signatures can be considered authentic. The details concerning how implemented are complex. They usually involve a combination of the encryption schemes. Digital signatures provide a way of verifying both the sender of the information and the content of the message, ensuring that it has not been modified. So, a digital signature is like an official seal on both a document & the envelope that protects the document from being altered.

Example of Digital Signature Buy gold Plaintext Hashing algorithm 12 Public key encryption scheme wr Hash Ciphertext of hash Private key encryption scheme Ciphertext axzmqtu Message sent over network wr/axz mqtu Private key1 Public key Matched pair Private key 2 Bob Alice

Continued.. Suppose Alice wants to send Bob a confidential message, Buy gold. And Bob needs to know for sure that Alice sent the message and that it arrived unaltered. A combination of three cryptographic schemes we have discussed can be used. Alice computes the hash of her plaintext message, using a hashing algorithm she & Bob have chosen. In this example, Alice obtains a value of 12. She then uses her private key(key1) to her matching public key and an agreed upon public key cryptographic scheme to encrypt the hash of the plaintext, getting wr. Alice then uses a different private key(key2) and an agreed upon private key cryptography scheme to encrypt the plain text. In this case she obtains axzmqtu.

Continued.. She sends Bob the following two items: The private key encrypted ciphertext of plaintext(axzmqtu). The public key encrypted hash of the plaintext(wr). when Bob receives the message, he essentially needs to reverse the steps that Alice took. He first splits the message into axzmqtu & wr. Bob processes axzmqtu using the private key(key2) that he & Alice chose, & he comes up with the original plaintext Buy gold. Next he uses the hashing algorithm on Buy gold and obtains a value of 12. Bob then uses Alices public key to decrypt the ciphertext of the hash wr. He again obtains a value of 12. Since the two hash values match (12 = 12), Bob can be sure that Alice sent the message & that it arrived intact.

Firewalls A firewall is a security mechanism used by organizations to protect their LANs from the internet. A firewall keeps private resources confidential and minimizes security risks. The idea is simply to restrict LAN access to trusted users. A firewall controls network traffic, in both directions.

Continued.. Following figure shows a sample firewall between a LAN & the internet: LAN Request permitted Trusted users Restricted Area Internet Unrestricted Area Request denied spy Connection to internet Firewall serves as a filter

Continued.. The users shown in the restricted area are trusted users. Whereas the users in the unrestricted area are people who are not to be allowed into the LAN. The amount of filtering a firewall provides varies. For example, in one scenario, users in the restricted area may be able to send to anyone on the the internet, surf the Web, use remote login, and transfer files. While users in the unrestricted area may not be allowed to do anything except send to people inside the firewall. In another situation, using the same firewall, only e- mail might be permitted in either direction.