MEBT Design Considerations The beam energy in the MEBT is sufficiently low for the space charge forces to have a considerable impact on the beam dynamics.

Slides:



Advertisements
Similar presentations
Imperial College 1 Progress at the RAL Front End Test Stand J. Pozimski Talk outline : Overview Ion source development LEBT RFQ Beam Chopper MEBT.
Advertisements

R. Miyamoto, Beam Physics Design of MEBT, ESS AD Retreat 1 Beam Physics Design of MEBT Ryoichi Miyamoto (ESS) November 29th, 2012 ESS AD Retreat On behalf.
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
M. LindroosNUFACT06 School Accelerator Physics Transverse motion Mats Lindroos.
Managed by UT-Battelle for the Department of Energy SNS MEBT : Beam Dynamics, Diagnostics, Performance. Alexander Aleksandrov Oak Ridge National Laboratory.
ESS DTL beam commissioning
100 MeV- 1 GeV Proton Synchrotron for Indian Spallation Neutron Source Gurnam Singh Beam Dynamics Section CAT, Indore CAT-KEK-Sokendai School on Spallation.
Field and Phase Error Studies in Normal Conducting Structures LLRF and Beam Dynamics in Hadron Linacs – EuCARD2 Workshop Ciprian Plostinar
FFAG-ERIT Accelerator (NEDO project) 17/04/07 Kota Okabe (Fukui Univ.) for FFAG-DDS group.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
J. Rodnizki SARAF, Soreq NRC HB2008, August, 2008 Nashville TN Lattice Beam dynamics study and loss estimation for SARAF/ EURISOL driver 40/60 MeV 4mA.
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
Particle dynamics in electron FFAG Shinji Machida KEK FFAG04, October 13-16, 2004.
A 3 Pass, Dog-bone Cooling Channel G H Rees, ASTeC, RAL.
DTL: Basic Considerations M. Comunian & F. Grespan Thanks to J. Stovall, for the help!
Proton Driver: Status and Plans C.R. Prior ASTeC Intense Beams Group, Rutherford Appleton Laboratory.
Beam dynamics on damping rings and beam-beam interaction Dec 포항 가속기 연구소 김 은 산.
Experience from the Spallation Neutron Source Commissioning Dong-o Jeon Accelerator Physics Group Oak Ridge National Laboratory May 9, 2007.
MW Upgrades for the ISIS Facility John Thomason. OptionCommentsBeam Power (MW) Neutron Yield 1(a)Add 180 MeV LinacTechnical Issues~ (b)Add 800.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
Status of the Front End Test Stand April Infrastructure R8 refurbished Laser lab under construction Vacuum system for first section delivered Stands.
January 5, 2004S. A. Pande - CAT-KEK School on SNS MeV Injector Linac for Indian Spallation Neutron Source S. A. PANDE.
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Dogbone RLA – Design.
-Factory Front End Phase Rotation Gas-filled rf David Neuffer Fermilab Muons, Inc.
Electron Model for a 3-10 GeV, NFFAG Proton Driver G H Rees, RAL.
PROTON LINAC FOR INDIAN SNS Vinod Bharadwaj, SLAC (reporting for the Indian SNS Design Team)
Accelerator Science and Technology Centre POST-LINAC BEAM TRANSPORT AND COLLIMATION FOR THE UK’S NEW LIGHT SOURCE PROJECT D. Angal-Kalinin,
28-May-2008Non-linear Beam Dynamics WS1 On Injection Beam Loss at the SPring-8 Storage Ring Masaru TAKAO & J. Schimizu, K. Soutome, and H. Tanaka JASRI.
Beam Dynamics and Linac Simulation Petr Ostroumov Fermilab Accelerator Advisory Committee May 10 th – 12 th, 2006.
FNAL 8 GeV SC linac / HINS Beam Dynamics Jean-Paul Carneiro FNAL Accelerator Physics Center Peter N. Ostroumov, Brahim Mustapha ANL March 13 th, 2009.
ICFA-HB 2004 Commissioning Experience for the SNS Linac A. Aleksandrov, S. Assadi, I. Campisi, P. Chu, S. Cousineau, V. Danilov, G. Dodson, J. Galambos,
Accelerator Science and Technology Centre POST-LINAC BEAM TRANSPORT AND COLLIMATION FOR THE UK’S NEW LIGHT SOURCE PROJECT D. Angal-Kalinin,
Module 5 A quick overview of beam dynamics in linear accelerators
New Gantry Idea for H + /C 6+ Therapy G H Rees, ASTeC, RAL 4 th September, 2008.
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
3 MeV test stand measurement plans A. Lombardi for the LINAC4 team 10/01/2013BCC MeV test stand measurements1.
July LEReC Review July 2014 Low Energy RHIC electron Cooling Jorg Kewisch, Dmitri Kayran Electron Beam Transport and System specifications.
Concept Preliminary Estimations A. Kolomiets Charge to mass ratio1/61/8 Input energy (MeV/u) Output energy (MeV/u)2.5(3.5) Beam.
Marcel Schuh CERN-BE-RF-LR CH-1211 Genève 23, Switzerland 3rd SPL Collaboration Meeting at CERN on November 11-13, 2009 Higher.
ICFA Workshop on Future Light Source, FLS2012 M. Shimada A), T. Miyajima A), N. Nakamura A), Y. Kobayashi A), K. Harada A), S. Sakanaka A), R. Hajima B)
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
A.Saini, K.Ranjan, N.Solyak, S.Mishra, V.Yakovlev on the behalf of our team Feb. 8, 2011 Study of failure effects of elements in beam transport line &
R. Miyamoto, MEBT Lattice Optimization, ESS AD Beam Physics Internal Review 1 MEBT Lattice Optimization Ryoichi Miyamoto (ESS) For Beam Physics Group,
Accumulator & Compressor Rings with Flexible Momentum Compaction arccells MAP 2014 Spring Meeting, Fermilab, May 27-31, 2014 Y. Alexahin (FNAL APC)
CW Linac Lattice August, 29 N.Solyak, B.Shteynas.
Choppers Comparison of three schemes of choppers is made 2.5 MeV and 2.1 MeV beam energies are considered Presented by Boris Shteynas May,
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
DTL: Basic Considerations M. Comunian & F. Grespan Thanks to J. Stovall, for the help!
Particle Physics Group Meeting January 4 th – 5 th 2010 Commissioning EMMA, the Worlds First Non Scaling Fixed Field – Alternating Gradient Accelerator.
ESS Front End diagnostic
Preservation of Magnetized Beam Quality in a Non-Isochronous Bend
A. Aksoy Beam Dynamics Studies for the CLIC Drive Beam Accelerator A. AKSOY CONTENS ● Basic Lattice Sketches ● Accelerating structure ● Short and long.
General Design of C-ADS Accelerator Physics
Linac4 Beam Characteristics
Physics design on the main linac
HIPPI yearly meeting, sep28-sep
Progress in the Multi-Ion Injector Linac Design
Status of the Front End Test Stand April 2007.
1- Short pulse neutron source
Jeffrey Eldred, Sasha Valishev
LINAC4 commissioning plans etc.
Pulsed Ion Linac for EIC
Electron Rings Eduard Pozdeyev.
MEBT1&2 design study for C-ADS
Physics Design on Injector I
Laser Heater Integration into XFEL. Update.
Studies on orbit corrections
DTL M. Comunian M. Eshraqi.
Status of the JLEIC Injector Linac Design
Multi-Ion Injector Linac Design – Progress Summary
Presentation transcript:

MEBT Design Considerations The beam energy in the MEBT is sufficiently low for the space charge forces to have a considerable impact on the beam dynamics. In order to control the emittance growth, the lattice optics has to be regular and provide strong focussing. Transversally, the requirement is for regular betatron oscillations amplitudes as equal as possible in both planes. For a typical FODO cell, this is equivalent to having a zero current phase advance below 90° and it’s achieved by choosing the right quadrupole gradients. A strong and uniform longitudinal focusing is also imposed, this being accomplished by adjusting the voltages in the re- bunching cavities. On the other hand, in order to minimise beam losses and induced radioactivity at injection into downstream circular accelerators, beam chopping at low energy is required. At RAL, a “fast-slow” novel chopping scheme will be employed creating the required gaps in the bunch train. The choppers, however, are large devices and long drift spaces will have to be reserved in the MEBT line. The MEBT design is especially challenging as it has to take into account the two conflicting requirements mentioned above: uniform focusing and long drift spaces without focusing elements, reserved for choppers and beam dumps. QQ C QQQ C Q C Q CHOPPER Q

Possible MEBT Schemes Scheme 1 represents the preferred design for the FETS project. The front and the end matching sections are similar and consist of a two doublet quadrupole configuration and a 324 MHz CCL-type re-bunching cavity. The choppers are arranged symmetrically, each followed by a dedicated beam dump and a defocusing quadrupole. The defocusing quadrupoles are used to amplify the deflection given by the choppers, thus reducing the required voltage on the chopper plates. Fast Chopper Slow Chopper Beam Dumps Quadrupoles Re-bunching cavities RFQ DTL

Possible MEBT Schemes Scheme 2 is currently being used in the ISIS upgrade linac design and it comprises of two input quadrupoles, two solenoids, two sets of asymmetric triplet quadrupoles and four 324 Mhz re-bunching cavities. The input quadrupoles are used for matching the beam from the RFQ, while the solenoids focus the beam into a ~1.5 m long drift where the two choppers are placed. This is followed by a first set of triplets, a ~1.1 m long drift section for the beam dump, and a second set of triplets to match the beam into the DTL Fast Chopper Slow Chopper Beam Dump Quadrupoles Re-bunching cavities RFQ DTL Solenoids

Possible MEBT Schemes Scheme 3 investigates the possibility of using a more regular lattice. For this purpose, three sets of symmetric triplet quadrupoles and six re-bunching cavities are being used. They are equally spaced by long drift tube sections reserved for the two choppers and for the beam dump. Fast Chopper Slow Chopper Beam Dump Quadrupoles Re-bunching cavities RFQ DTL

MEBT + DTL Beam tracking studies indicate that the MEBT design has a strong influence on the beam quality in the downstream accelerators (ISIS Upgrade Linac) 3 MEBT Schemes + DTL (1 tank), DTL: 3 – 16 MeV, 60 mA, 324 MHz – Input beam distribution: Gaussian, 50k particles, RMS Emitt x/y/z: 0.27/0.27/0.38 Pi.mm.mrad 1 DTL Tank, 60 mA, MeV MEBT 2 MEBT 3 MEBT 1

MEBT + DTL Beam Envelopes MEBT 1 + DTLMEBT 3 + DTL MEBT 2 + DTL

MEBT + DTL Discussion Emittance Growth DTLMEBT 1 + DTL MEBT 2 + DTL MEBT 3 + DTL MEBT (%) tr z DTL (%)tr z Total (%)tr z Halo(%)tr/z~15~30~60150 Emittance growth In the first design, the two long choppers create an irregular lattice for the central section of the MEBT. However, by having a symmetrical scheme, the drift lengths are reduced to ~ 0.5 m. Shorter drifts are desirable from the beam optics point of view, and by carefully choosing the quadrupole gradients, the beta functions can be kept comparable in both transverse planes. Consequently, the emittance growth and the halo development are reasonably controlled, both in the MEBT line and the DTL. For the second scheme, the chopper sections have a similar effect on the lattice. However, the reserved drift spaces are much longer (~1.5 and ~1.1 m) and as a result, the strong space charge forces will distort the beam structure more than for the first scheme, leading to a higher emittance growth. The third MEBT also includes two long drift sections (~1.1 m each) but has the advantage of a periodic lattice. However, the betatron oscillations amplitudes vary significantly in the two transverse planes and the beam quality is deteriorating rapidly.