SUSY Discovery at 10TeV ? ATLAS-UK SUSY/Exotics Meeting 8 th May 2008 Claire Gwenlan.

Slides:



Advertisements
Similar presentations
F.Pastore II Workshop sulla fisica di ATLAS e CMS Oct Trigger di primo livello per gli esperimenti ATLAS & CMS ad LHC F.Pastore INFN Sezione.
Advertisements

Glasgow ATLAS physics meeting intro Craig Buttar 19-Feb-06.
R-parity conserving SUSY studies with jets and E T Miss Alexander Richards, UCL 1.
PPD/Southampton seminarB W Kennedy, RAL PPD23 Nov 2001 Survey of Higgs searches at CMS B W Kennedy, RAL/PPD 23 November 2001.
Experimental Particle Physics PHYS6011 Joel Goldstein, RAL 1.Introduction & Accelerators 2.Particle Interactions and Detectors (2) 3.Collider Experiments.
Sparticle reconstruction in dilepton final state M. Chiorboli, M. Galanti & A. Tricomi University & INFN Catania CMS Physics Review I. SUSY/BSM CERN,
Higgs at the Tevatron and LHC Rick St. Denis – Glasgow University.
SUSY Discovery at 10 TeV? UCL Atlas Meeting 2 nd May 2008.
Discovery Potential in Jets + MET at 10 TeV ? ATLAS Monojets/Dijets Meeting 20 th May 2008 Claire Gwenlan.
ATLAS SUSY meeting - MET signatures subgroup, 24 Sept’ TeV Alan Barr, Claire Gwenlan (Oxford) - initial look at the two- and three-jets+MET.
SUSY Discovery at 10TeV? SUSY working group meeting 21 st May 2008 Claire Gwenlan, UCL.
Monte Carlo Reweighting: an Alternative to 10TeV Production? Claire Gwenlan, UCL Recently investigated reweighting existing FullSim samples to 10 TeV My.
Searches for the Third Generation: SUSY with b-jets in ATLAS Searches for the Third Generation: SUSY with b-jets in ATLAS Monica D’Onofrio University of.
Peter Schleper, Hamburg University SUSY07 Non-SUSY Searches at HERA 1 Non-SUSY Searches at HERA Peter Schleper Hamburg University SUSY07 July 27, 2007.
Current limits (95% C.L.): LEP direct searches m H > GeV Global fit to precision EW data (excludes direct search results) m H < 157 GeV Latest Tevatron.
Recent Results on the Possibility of Observing a Standard Model Higgs Boson Decaying to WW (*) Majid Hashemi University of Antwerp, Belgium.
Fourth Generation Leptons Linda Carpenter UC Irvine Dec 2010.
Batool Safarzadeh (science and research campus azad university & ipm ) First IPM meeting on LHC Physics
1 Rutherford Appleton Laboratory The 13th Annual International Conference on Supersymmetry and Unification of the Fundamental Interactions Durham, 2005.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
Heavy Flavor Production at the Tevatron Jennifer Pursley The Johns Hopkins University on behalf of the CDF and D0 Collaborations Beauty University.
LHC pp beam collision on March 13, 2011 Haijun Yang
Update on Tools FTK Meeting 06/06/06 Erik Brubaker U of Chicago.
Introduction to Single-Top Single-Top Cross Section Measurements at ATLAS Patrick Ryan (Michigan State University) The measurement.
Higgs Detection Sensitivity from GGF H  WW Hai-Jun Yang University of Michigan, Ann Arbor ATLAS Higgs Meeting October 3, 2008.
1 Hadronic In-Situ Calibration of the ATLAS Detector N. Davidson The University of Melbourne.
July 20, 2005S.Abdullin SUSY Triggers1 Salavat Abdullin For CMS Collaboration SUSY 2005, July 18-23, 2005 Durham, UK.
Discovery Potential for MSSM Higgs Bosons with ATLAS Johannes Haller (CERN) on behalf of the ATLAS collaboration International Europhysics Conference on.
Single-Top Cross Section Measurements at ATLAS Patrick Ryan (Michigan State University) Introduction to Single-Top The measurement.
Data-based background predictions using forward events Victor Pavlunin and David Stuart University of California Santa Barbara July 10, 2008.
Heavy charged gauge boson, W’, search at Hadron Colliders YuChul Yang (Kyungpook National University) (PPP9, NCU, Taiwan, June 04, 2011) June04, 2011,
Data results for inclusive all-hadronic (RA  with 318 nb -1 SUSY Hadronic/GMSB Meeting [C. Rogan et al.] Data Plots Towards.
An Executive Summary of US ATLAS workshop on Beyond The Standard Model Physics Time & Place: Thursday 3/30 +Friday 4/1, Columbia University Topics: Beyond.
1 A Preliminary Model Independent Study of the Reaction pp  qqWW  qq ℓ qq at CMS  Gianluca CERMINARA (SUMMER STUDENT)  MUON group.
Analysis Plans for Jets + EtMiss Signatures Pierre Savard ATLAS Toronto Group Meeting January
Discovery potential for H + decaying to SUSY particles 30 March 2005, ATLAS Higgs Working Group Meeting, CERN Christian Hansen Uppsala University Nils.
Inclusive analysis of supersymmetry in EGRET-point with one-lepton events: pp → 1ℓ + 4j + E Tmiss + Х V.A. Bednyakov, S.N. Karpov, E.V. Khramov and A.F.
1 HEP 2008, Olympia, Greece Ariadni Antonaki Dimitris Fassouliotis Christine Kourkoumelis Konstantinos Nikolopoulos University of Athens Studies for the.
Commissioning Studies Top Physics Group M. Cobal – University of Udine ATLAS Week, Prague, Sep 2003.
HERA-LHC, CERN Oct Preliminary study of Z+b in ATLAS /1 A preliminary study of Z+b production in ATLAS The D0 measurement of  (Z+b)/  (Z+jet)
Possibility of tan  measurement with in CMS Majid Hashemi CERN, CMS IPM,Tehran,Iran QCD and Hadronic Interactions, March 2005, La Thuile, Italy.
Martin White – Cambridge ATLAS UK ATLAS Physics Meeting, May 2004.
Searches for the Standard Model Higgs at the Tevatron presented by Per Jonsson Imperial College London On behalf of the CDF and DØ Collaborations Moriond.
Data-based background predictions for new particle searches at the LHC David Stuart Univ. of California, Santa Barbara Texas A&M Seminar March 24, 2010.
1 TOP MASS MEASUREMENT WITH ATLAS A.-I. Etienvre, for the ATLAS Collaboration.
By Henry Brown Henry Brown, LHCb, IOP 10/04/13 1.
T. LeCompte Argonne National Laboratory Evolution of the Run Plan.
1 Arnold Pompoš, SUSY03, Tucson, Arizona, June 5-10, 2003.
ALEPH Status Report LEPC - July Gary Taylor, UC Santa Cruz SM processes Higgs searches SUSY searches.
H->bb Status Ricardo Gonçalo (RHUL) on behalf of the H->bb analysis team HSG5 Meeting, 16 February 2011.
Kinematics of Top Decays in the Dilepton and the Lepton + Jets channels: Probing the Top Mass University of Athens - Physics Department Section of Nuclear.
10 January 2008Neil Collins - University of Birmingham 1 Tau Trigger Performance Neil Collins ATLAS UK Physics Meeting Thursday 10 th January 2008.
Vector boson scattering at CMS (LHC)
Trilepton+top signal from chargino-neutralino decays of MSSM charged Higgs bosons 17 June 2004, 9 th Nordic LHC Physics Workshop, Copenhagen Christian.
1 UCSD Meeting Calibration of High Pt Hadronic W Haifeng Pi 10/16/2007 Outline Introduction High Pt Hadronic W in TTbar and Higgs events Reconstruction.
Backup slides Z 0 Z 0 production Once  s > 2M Z ~ GeV ÞPair production of Z 0 Z 0 via t-channel electron exchange. e+e+ e-e- e Z0Z0 Z0Z0 Other.
Trilepton+top signal from chargino-neutralino decays of MSSM charged Higgs bosons 12 Nov 2004, 10 th Nordic LHC Physics Workshop, Stockholm Christian Hansen.
Viktor Veszpremi Purdue University, CDF Collaboration Tev4LHC Workshop, Oct , Fermilab ZH->vvbb results from CDF.
E. Soldatov Tight photon efficiency study using FSR photons from Z  ll  decays E.Yu.Soldatov* *National Research Nuclear University “MEPhI”
Royal Holloway Department of Physics Top quark pair cross section measurements in ATLAS Michele Faucci Giannelli On behalf of the ATLAS collaboration.
Study of Diboson Physics with the ATLAS Detector at LHC Hai-Jun Yang University of Michigan (for the ATLAS Collaboration) APS April Meeting St. Louis,
Report from SUSY working group
Proposals for near-future BG determinations from control regions
Early EWK/top measurements at the LHC
ATLAS: Missing Transverse Energy in the Search for Supersymmetry
Alan Barr Claire Gwenlan
PDF Uncertainties on W+Jets
Di-jets & MT2 for early SUSY discovery
Using Single Photons for WIMP Searches at the ILC
SUSY particles searches with R-parity violation at DØ, Tevatron
Presentation transcript:

SUSY Discovery at 10TeV ? ATLAS-UK SUSY/Exotics Meeting 8 th May 2008 Claire Gwenlan

Introduction 10TeV run coming soon (2-3 months? 100 pb -1 possible?) Studies show that, if SUSY is relatively light, it could be discovered very early at the LHC (based on 14TeV Monte Carlo) – so what about at 10TeV – could we hope to see something? – so what about at 10TeV – could we hope to see something? 2

Introduction 10TeV run coming soon (2-3 months? 100 pb -1 possible?) Studies show that, if SUSY is relatively light, it could be discovered very early at the LHC (based on 14TeV Monte Carlo) – so what about at 10TeV – could we hope to see something? – so what about at 10TeV – could we hope to see something? 3 “Commissioning to 10 TeV should be fast, no quench being anticipated, giving us confidence that the experiments will be recording data at record high energies by the summer. In 1989, it was only a matter of weeks before LEP produced its first profound result – a measurement of the number of light neutrino families. In this respect at least, history will not be repeating itself. The LHC is a discovery machine, and the discoveries it is chasing will require a little more patience.” Robert Aymar, on the 10TeV run

PDFs  from 14TeV  10TeV Currently no MC… BUT can re-weight existing 14TeV samples hadronic cross section given by: hadronic cross section given by: For a particular kinematic configuration with s, t, u, should just need to change the probability that incoming partons *had* that configuration i.e. just a PDF re-weight proton PDFs Plot from James Stirling: DIS08 ^ ^ ^ ^ ^ ^ x i : x of parton i at 14TeV; x i ’: x of parton i at 10TeV Re-weight MC to 10TeV using: 4

Check of Reweight Method Good agreement between reweighted and 10TeV samples (bkgs also checked) EG: SU3 SUSY events generated in ATLFAST p T Jet,1,2 >150,100 GeV M eff = p T Jet,1 + p T Jet,2 + MET Effective Mass example weights (all < 1) 5 PDF weight

EG: CSC5-style, inclusive 2- and 3-Jet analyses (full details in note) results shown in main part of talk are for the 2-Jet case (3-Jet results in backups) results shown in main part of talk are for the 2-Jet case (3-Jet results in backups) Cut No. 2-Jet Analysis Cuts 0 J70_XE70 trigger 1 p T Jet,1 > 150 GeV 2 p T Jet,2 > 100 GeV 3 MET > max(100,0.3*M eff ) 4 |phi(Jet1,2)-phi(MET)| > no isolated lepton SUSY analysis “Generic search for R-parity conserving SUSY in 2-Jet + MET+0-lepton channel” Effective Mass: M eff = ∑ p T Jet,i + MET [sum runs over two highest-p T jets] 6

Results: SU3 vs. SM bkg Integrated L = 100 pb -1 BEFORE reweighting  EG: CSC5 2  Jet + MET + 0  lepton SUSY analysis: 7

Results: SU3 vs. SM bkg Integrated L = 100 pb -1 BEFORE reweighting  AFTER reweighting  14 TeV  10 TeV:  SU3 signal reduced by ~ 2.9  SM bkg reduced by ~ EG: CSC5 2  Jet + MET + 0  lepton SUSY analysis:

Integrated L = 100 pb -1 Comparison of some other SUSY benchmark points (SUX) all are mSUGRA, but cover quite a wide range of phenomenologies all are mSUGRA, but cover quite a wide range of phenomenologiesSU1 coannihilation region SU2 focus point region SU3 bulk region SU4 low mass point SU6 funnel region SU8.1 coannihilation region Results: other mSUGRA points 9 EG: CSC5 2  Jet + MET + 0  lepton SUSY analysis:

Statistical Significance (S/√B) 14TeV10TeV SU12312 SU2 < 1 SU33922 SU SU6168 SU82412 Statistical Significances 100 pb -1 Numbers are maximum significances (taken above some M eff threshold) (don’t take too much notice of the actual values – it’s just to get a rough feeling) 10

Discovery Significances 100 pb -1 Discovery Significance (Z n ) * 14TeV10TeV SU SU2<1<1 SU SU SU SU * Z n is a measure of the significance (as used in CSC5) which tries to take into account systematic uncertainties on the bkg measurements. The numbers in the table above are calculated assuming 50% uncertainty on QCD and 20% on all other bkgs – these are not necessarily the “right” numbers – dedicated bkg studies needed for those! 11 Numbers are maximum significances (taken above some M eff threshold) (don’t take too much notice of the actual values – it’s just to get a rough feeling)

Summary Is there potential for discovery with small amounts of 10 TeV data?  YES – there does seem to be potential! A 5x increase in centre-of-mass energy compared to previous experiments is still a lot!!! – and the discovery of light SUSY may not need much data (it doesn’t take much to give large S/  B values for the models considered here) BUT that data still needs to be understood BUT that data still needs to be understood This was really just a quick look for fun – to see if anything is even potentially feasible! It looks like it could be, but the limiting factor will of course be how well we can determine and understand the backgrounds with the small amount of data we expect. 12

BackUps

Integrated L = 100 pb -1 Results: other mSUGRA points 14Cut 3-Jet Analysis Cuts 0 J70_XE70 trigger 1 p T Jet,1 > 150 GeV 2 p T Jet,3 > 100 GeV 3 MET>max(100,0.25*M eff ) 4 |phi(Jet1,2,3)-phi(MET)| > no isolated lepton EG: CSC5 3  Jet + MET + 0  lepton SUSY analysis:

mSUGRA Points m0m1/2A0 tan  Region SU > 0 Coannihilation SU Focus point SU > 0 Bulk SU Low mass SU > 0 Funnel SU Coannihilation More details on the mSUGRA points considered 15

MC Bkg Samples Sample CSC ID  (pb) N T K TTbar K J4MET K J5MET K J6MET K J7MET K J8MET x K WW K WZ K ZZ K Zee K Zmumu K Ztautau K Znunu K Wenu K Wmunu K Wtaunu K 16