AP Biology 2007-2008 Photosynthesis: Variations on the Theme.

Slides:



Advertisements
Similar presentations
THE CALVIN CYCLE: REDUCING CO2TO SUGAR
Advertisements

Photosynthesis: Variations on the Theme
AP Biology Photosynthesis: Variations on the Theme.
 Allow for the entry of CO 2 and exit of water vapor (transpiration).  On sunny, hot, dry days, guard cells close to preserve water, but this poses.
Photorespiration AP BIO. Review Stomates need to be OPEN for gas exchange to occur in the leaf However, open stomates can lead to dehydration due to transpiration.
Photosynthesis: Variations on the Theme
Chapter 10. Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme (Ch. 10)
AP Biology Photosynthesis: Variations on the Theme.
PHOTOSYNTHESIS Variations on a Theme WHAT DO PLANTS NEED? Photosynthesis Light reactions Light H 2 O Calvin cycle CO 2 O O C  sun  ground  air What.
Organisms capture and store free energy for use in biological processes Calvin Cycle.
Alternative Methods of Carbon Fixation Photorespiration & C 3 Plants Photorespiration & C 3 Plants C 4 Photosynthesis & Plants C 4 Photosynthesis & Plants.
Plant Adaptations: C3 and C4 plants
AP Biology AP Biology John D. O’Bryant School of Mathematics and Science November 8, 2012.
AP Biology Remember what plants need…  Photosynthesis  light reactions  light H2OH2O  Calvin cycle  CO 2 What structures have plants evolved to.
AP Biology Photosynthesis: Variations on the Theme.
D.N.A Objective: SWBAT describe the role of ATP and NADPH produced in the light reactions in the Calvin cycle and discuss the major consequences of photorespiration.
The Dark Reaction - - light-independent - - energy stored in ATP and NADPH (from light reaction) is used to reduce CO 2 to sugar.
Chapter 10 Photosynthesis: Life from Light
Photosynthesis: Variations on the Theme (Ch. 10).
Photosynthesis 2: The Calvin Cycle & Control Big Questions Why is the Calvin Cycle necessary? How do the products of the light reactions contribute to.
AP Biology Photosynthesis: Variations on the Theme.
AP Biology Photosynthesis: Variations on the Theme.
Photosynthesis, Environment & Adaptation C3 vs. C4 vs. CAM Photosynthesis.
Conflicting requirements in plants Water regulation in plants How do organisms ‘solve’ common problems? –Water lost by transpiration through stomata –If.
Closed stomates Closed stomates lead to… –O 2 builds up  from light reactions –CO 2 is depleted  in Calvin cycle causes problems in Calvin Cycle.
Photorespiration & Alternative Methods of Carbon Fixation.
Photosynthesis: A Recap 1 Based on this equation, how could the rate of photosynthesis be measured? The photosynthetic equation: light Excites electrons.
AP Biology Photosynthesis: Variations on the Theme.
Ch 10 Calvin Cycle, Photorespiration, C3/C4/CAM plants.
Photosynthesis- The Basis for Life on Earth Part II.
AP Biology Chapter 10 - Photosynthesis Life from Light and Air.
Fig Light Reactions: Photosystem II Electron transport chain Photosystem I Electron transport chain CO 2 NADP + ADP P i + RuBP 3-Phosphoglycerate.
School of Sciences, Lautoka Campus BIO509 Lecture 25: Photorespiration
Chapter 10: Photosynthesis
Chapter 10. Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Photosynthesis Part 2 The Calvin Cycle.
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Concept 10.3: The Calvin cycle uses the chemical energy of ATP and NADPH to reduce CO2 to sugar The Calvin cycle, like the citric acid cycle, regenerates.
Photosynthesis: Variations on the Theme
Photosynthesis: The Calvin Cycle Life from Air
Light Reaction Review:
Light Independent Reactions
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Agenda: Bell Ringer Notes over C4 and CAM plants
Photosynthesis: Calvin Cycle
Alternative Methods of Carbon Fixation
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
AP Biology Photosynthesis Part 3.
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Photosynthesis: Variations on the Theme
Alternative Methods of Carbon Fixation
Presentation transcript:

AP Biology Photosynthesis: Variations on the Theme

AP Biology Remember what plants need…  Photosynthesis  light reactions  light H2OH2O  Calvin cycle  CO 2 What structures have plants evolved to supply these needs?  sun  ground  air O O C

AP Biology Leaf Structure H2OH2O CO 2 O2O2 H2OH2O phloem (sugar) xylem (water) stomate guard cell palisades layer spongy layer cuticle epidermis O2O2 CO 2 Transpiration vascular bundle Gas exchange

AP Biology Controlling water loss from leaves  Hot or dry days  stomates close to conserve water  guard cells  gain H 2 O = stomates open  lose H 2 O = stomates close  adaptation to living on land, but… creates PROBLEMS!

AP Biology When stomates close… xylem (water) phloem (sugars) H2OH2O O2O2 CO 2 O2O2  Closed stomates lead to…  O 2 build up  from light reactions  CO 2 is depleted  in Calvin cycle  causes problems in Calvin Cycle The best laid schemes of mice and men… and plants!  

AP Biology Inefficiency of RuBisCo: CO 2 vs O 2  RuBisCo in Calvin cycle  carbon fixation enzyme  normally bonds C to RuBP  CO 2 is the optimal substrate  reduction of RuBP  building sugars  when O 2 concentration is high  RuBisCo bonds O to RuBP  O 2 is a competitive substrate  oxidation of RuBP  breakdown sugars photosynthesis photorespiration

AP Biology 6C unstable intermediate 1C CO 2 Calvin cycle when CO 2 is abundant 5C RuBP 3C PGA ADP ATP 3C NADP NADPH ADP ATP G3P to make glucose 3C G3P 5C RuBisCo C3 plants

AP Biology Calvin cycle when O 2 is high 5C RuBP 3C 2C to mitochondria ––––––– lost as CO 2 without making ATP photorespiration O2O2 Hey Dude, are you high on oxygen! RuBisCo It’s so sad to see a good enzyme, go BAD!

AP Biology Impact of Photorespiration  Oxidation of RuBP  short circuit of Calvin cycle  loss of carbons to CO 2  can lose 50% of carbons fixed by Calvin cycle  reduces production of photosynthesis  no ATP (energy) produced  no C 6 H 12 O 6 (food) produced  if photorespiration could be reduced, plant would become 50% more efficient  strong selection pressure to evolve alternative carbon fixation systems

AP Biology Reducing photorespiration  Separate carbon fixation from Calvin cycle  C4 plants  PHYSICALLY separate carbon fixation from Calvin cycle  different cells to fix carbon vs. where Calvin cycle occurs  store carbon in 4C compounds  different enzyme to capture CO 2 (fix carbon)  PEP carboxylase  different leaf structure  CAM plants  separate carbon fixation from Calvin cycle by TIME OF DAY  fix carbon during night  store carbon in 4C compounds  perform Calvin cycle during day

AP Biology C4 plants  A better way to capture CO 2  1st step before Calvin cycle, fix carbon with enzyme PEP carboxylase  store as 4C compound  adaptation to hot, dry climates  have to close stomates a lot  different leaf anatomy  sugar cane, corn, other grasses… sugar cane corn

AP Biology C4 leaf anatomy PEP (3C) + CO 2  oxaloacetate (4C) CO 2 O 2 light reactions C4 anatomy C3 anatomy  PEP carboxylase enzyme  higher attraction for CO 2 than O 2  better than RuBisCo  fixes CO 2 in 4C compounds  regenerates CO 2 in inner cells for RuBisCo  keeping O 2 away from RuBisCo bundle sheath cell RuBisCo PEP carboxylase stomate

AP Biology Comparative anatomy C3C4 Location, location,location! PHYSICALLY separate C fixation from Calvin cycle

AP Biology CAM ( Crassulacean Acid Metabolism ) plants  Adaptation to hot, dry climates  separate carbon fixation from Calvin cycle by TIME  close stomates during day  open stomates during night  at night: open stomates & fix carbon in 4C “storage” compounds  in day: release CO 2 from 4C acids to Calvin cycle  increases concentration of CO 2 in cells  succulents, some cacti, pineapple It’s all in the timing!

AP Biology CAM plants succulents cacti pineapple

AP Biology C4 vs CAM Summary C4 plants separate 2 steps of C fixation anatomically in 2 different cells CAM plants separate 2 steps of C fixation temporally = 2 different times night vs. day solves CO 2 / O 2 gas exchange vs. H 2 O loss challenge

AP Biology Why the C3 problem?  Possibly evolutionary baggage  Rubisco evolved in high CO 2 atmosphere  there wasn’t strong selection against active site of Rubisco accepting both CO 2 & O 2  Today it makes a difference  21% O 2 vs. 0.03% CO 2  photorespiration can drain away 50% of carbon fixed by Calvin cycle on a hot, dry day  strong selection pressure to evolve better way to fix carbon & minimize photorespiration We’ve all got baggage!

AP Biology C4 photosynthesis CO 2 O2O2 O2O2  Outer cells  light reaction & carbon fixation  pumps CO 2 to inner cells  keeps O 2 away from inner cells  away from RuBisCo  Inner cells  Calvin cycle  glucose to veins PHYSICALLY separated C fixation from Calvin cycle