Efficient Diversification

Slides:



Advertisements
Similar presentations
Money, Banking & Finance Lecture 3
Advertisements

Chapter Outline 10.1 Individual Securities
Capital Asset Pricing Model
Efficient Diversification I Covariance and Portfolio Risk Mean-variance Frontier Efficient Portfolio Frontier.
6 Efficient Diversification Bodie, Kane, and Marcus
6 Efficient Diversification Bodie, Kane, and Marcus
F303 Intermediate Investments1 Inside the Optimal Risky Portfolio New Terms: –Co-variance –Correlation –Diversification Diversification – the process of.
Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Return and Risk: The Capital Asset Pricing Model (CAPM) Chapter.
Chapter 8 Portfolio Selection.
Efficient Diversification
INVESTMENTS | BODIE, KANE, MARCUS ©2011 The McGraw-Hill Companies CHAPTER 7 Optimal Risky Portfolios 1.
INVESTMENTS | BODIE, KANE, MARCUS ©2011 The McGraw-Hill Companies CHAPTER 7 Optimal Risky Portfolios 1.
Corporate Finance Portfolio Theory Prof. André Farber SOLVAY BUSINESS SCHOOL UNIVERSITÉ LIBRE DE BRUXELLES.
Vicentiu Covrig 1 Portfolio management. Vicentiu Covrig 2 “ Never tell people how to do things. Tell them what to do and they will surprise you with their.
Optimal Risky Portfolios
McGraw-Hill/Irwin © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. Efficient Diversification CHAPTER 6.
Return and Risk: The Capital Asset Pricing Model Chapter 11 Copyright © 2010 by the McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
AN INTRODUCTION TO PORTFOLIO MANAGEMENT
FIN638 Vicentiu Covrig 1 Portfolio management. FIN638 Vicentiu Covrig 2 How Finance is organized Corporate finance Investments International Finance Financial.
Theory 2: Modern Portfolio Theory (MPT) and Efficient Frontiers
1 Optimal Risky Portfolio, CAPM, and APT Diversification Portfolio of Two Risky Assets Asset Allocation with Risky and Risk-free Assets Markowitz Portfolio.
McGraw-Hill/Irwin © 2004 The McGraw-Hill Companies, Inc., All Rights Reserved. Chapter 9 Capital Asset Pricing.
Risk Premiums and Risk Aversion
Optimal Risky Portfolios
Optimal Risky Portfolio, CAPM, and APT
The Capital Asset Pricing Model (CAPM)
Return and Risk: The Capital-Asset Pricing Model (CAPM) Expected Returns (Single assets & Portfolios), Variance, Diversification, Efficient Set, Market.
Lecture 10 The Capital Asset Pricing Model Expectation, variance, standard error (deviation), covariance, and correlation of returns may be based on.
McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved. Efficient Diversification Module 5.3.
McGraw-Hill/Irwin Copyright © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. Efficient Diversification CHAPTER 6.
FIN437 Vicentiu Covrig 1 Portfolio management Optimum asset allocation Optimum asset allocation (see chapter 7 Bodie, Kane and Marcus)
McGraw-Hill/Irwin © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. Efficient Diversification CHAPTER 6.
INVESTMENTS | BODIE, KANE, MARCUS Chapter Seven Optimal Risky Portfolios Copyright © 2014 McGraw-Hill Education. All rights reserved. No reproduction or.
Efficient Diversification CHAPTER 6. Diversification and Portfolio Risk Market risk –Systematic or Nondiversifiable Firm-specific risk –Diversifiable.
Return and Risk The Capital Asset Pricing Model (CAPM)
Finance 300 Financial Markets Lecture 3 Fall, 2001© Professor J. Petry
Efficient Diversification II Efficient Frontier with Risk-Free Asset Optimal Capital Allocation Line Single Factor Model.
Chapter 6 Market Equilibrium. McGraw-Hill/Irwin © 2004 The McGraw-Hill Companies, Inc., All Rights Reserved. The seminal work of Sharpe (1964) and Lintner.
McGraw-Hill/Irwin © 2007 The McGraw-Hill Companies, Inc., All Rights Reserved. Efficient Diversification CHAPTER 6.
Let’s summarize where we are so far: The optimal combinations result in lowest level of risk for a given return. The optimal trade-off is described as.
Optimal portfolios and index model.  Suppose your portfolio has only 1 stock, how many sources of risk can affect your portfolio? ◦ Uncertainty at the.
Essentials of Investments © 2001 The McGraw-Hill Companies, Inc. All rights reserved. Fourth Edition Irwin / McGraw-Hill Bodie Kane Marcus 1 Chapter 7.
McGraw-Hill/Irwin Copyright © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. Efficient Diversification CHAPTER 6.
Capital Market Theory (Chap 9,10 of RWJ) 2003,10,16.
Chapter 6 Efficient Diversification. E(r p ) = W 1 r 1 + W 2 r 2 W 1 = W 2 = = Two-Security Portfolio Return E(r p ) = 0.6(9.28%) + 0.4(11.97%) = 10.36%
McGraw-Hill/Irwin Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved Corporate Finance Ross  Westerfield  Jaffe Seventh Edition.
Chapter 6 Efficient Diversification Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Chapter 6 Efficient Diversification 1. Risk and Return Risk and Return In previous chapters, we have calculated returns on various investments. In chapter.
Bodie Kane Marcus Perrakis RyanINVESTMENTS, Fourth Canadian Edition Copyright © McGraw-Hill Ryerson Limited, 2003 Slide 6-1 Chapter 6.
Chapter 6 Efficient Diversification. McGraw-Hill/Irwin © 2004 The McGraw-Hill Companies, Inc., All Rights Reserved. r p = W 1 r 1 + W 2 r 2 W 1 = Proportion.
FIN437 Vicentiu Covrig 1 Portfolio management Optimum asset allocation Optimum asset allocation (see chapter 8 RN)
1 INVESTMENT ANALYSIS & PORTFOLIO MANAGEMENT Lecture # 35 Shahid A. Zia Dr. Shahid A. Zia.
Portfolio Diversification Modern Portfolio Theory.
Capital Allocation to Risky Assets
Efficient Diversification
Optimal Risky Portfolios
Optimal Risky Portfolios
Key Concepts and Skills
Return and Risk The Capital Asset Pricing Model (CAPM)
Efficient Diversification
6 Efficient Diversification Bodie, Kane and Marcus
CHAPTER 8 Index Models Investments Cover image Slides by
Chapter 19 Jones, Investments: Analysis and Management
Optimal Risky Portfolios
Portfolio Optimization- Chapter 7
Optimal Risky Portfolios
2. Building efficient portfolios
Figure 6.1 Risk as Function of Number of Stocks in Portfolio
Optimal Risky Portfolios
Presentation transcript:

Efficient Diversification Ch 6 Efficient Diversification

Diversification and Portfolio Risk Total risk: Market risk Systematic or Nondiversifiable Firm-specific risk Diversifiable or nonsystematic or unique

Figure 6.1 Portfolio Risk as a Function of the Number of Stocks

Figure 6.2 Portfolio Risk as a Function of Number of Securities

Exercise 42 1. Risk that can be eliminated through diversification is called ______ risk. A) unique B) firm-specific C) diversifiable D) all of the above 2. The risk that can be diversified away is ___________. A) beta B) firm specific risk C) market risk D) systematic risk

Two Asset Portfolio Return – Stock and Bond

Covariance Cov(r1r2) = r1,2s1s2 r1,2 = Correlation coefficient of returns s1 = Standard deviation of returns for Security 1 s2 = Standard deviation of returns for Security 2

Correlation Coefficients: Possible Values Range of values for r 1,2 -1.0 < r < 1.0 If r = 1.0, the securities would be perfectly positively correlated If r = - 1.0, the securities would be perfectly negatively correlated

Two Asset Portfolio St Dev – Stock and Bond

In General, For an n-Security Portfolio: rp = Weighted average of the n securities sp2 = (Consider all pair-wise covariance measures)

Numerical Example: Bond and Stock Returns Bond = 6% Stock = 10% Standard Deviation Bond = 12% Stock = 25% Weights Bond = .5 Stock = .5 Correlation Coefficient (Bonds and Stock) = 0

Return and Risk for Example .5(6) + .5 (10) Standard Deviation = 13.87% [(.5)2 (12)2 + (.5)2 (25)2 + … 2 (.5) (.5) (12) (25) (0)] ½ [192.25] ½ = 13.87

Figure 6.3 Investment Opportunity Set for Stock and Bonds

Minimum variance portfolio Ws = σB2 - Cov(rS, rB) / (σs2 + σB2 -2Cov(rS, rB))

Figure 6.4 Investment Opportunity Set for Stock and Bonds with Various Correlations

Extending to Include Riskless Asset The optimal combination becomes linear A single combination of risky and riskless assets will dominate

Figure 6.5 Opportunity Set Using Stock and Bonds and Two Capital Allocation Lines

Dominant CAL with a Risk-Free Investment (F) CAL(O) dominates other lines -- it has the best risk/return or the largest slope Slope = (E(R) - Rf) / s [ E(RP) - Rf) / s P ] > [E(RA) - Rf) / sA] Regardless of risk preferences combinations of O & F dominate

Figure 6.6 Optimal Capital Allocation Line for Bonds, Stocks and T-Bills

Figure 6.7 The Complete Portfolio

Figure 6.8 The Complete Portfolio – Solution to the Asset Allocation Problem

Extending Concepts to All Securities The optimal combinations result in lowest level of risk for a given return The optimal trade-off is described as the efficient frontier These portfolios are dominant

Figure 6.9 Portfolios Constructed from Three Stocks A, B and C

Figure 6.10 The Efficient Frontier of Risky Assets and Individual Assets

Exercise 22 1. Adding additional risky assets will generally move the efficient frontier _____ and to the _______. A) up, right B) up, left C) down, right D) down, left 2. Rational risk-averse investors will always prefer portfolios ______________. A) located on the efficient frontier to those located on the capital market line B) located on the capital market line to those located on the efficient frontier C) at or near the minimum variance point on the efficient frontier D) Rational risk-averse investors prefer the risk-free asset to all other asset choices.

Exercise33 1. The standard deviation of return on investment A is .10 while the standard deviation of return on investment B is .05. If the covariance of returns on A and B is .0030, the correlation coefficient between the returns on A and B is __________. A) .12 B) .36 C) .60 D) .77 2. Consider two perfectly negatively correlated risky securities, A and B. Security A has an expected rate of return of 16% and a standard deviation of return of 20%. B has an expected rate of return 10% and a standard deviation of return of 30%. The weight of security B in the global minimum variance is __________. A) 10% B) 20% C) 40% D) 60%

Exercise32 1. Which of the following correlations coefficients will produce the least diversification benefit? A) -0.6 B) -1.5 C) 0.0 D) 0.8 2. The expected return of portfolio is 8.9% and the risk free rate is 3.5%. If the portfolio standard deviation is 12.0%, what is the reward to variability ratio of the portfolio? A) 0.0 B) 0.45 C) 0.74 D) 1.35

Single Factor Model ri = E(Ri) + ßiF + e ßi = index of a securities’ particular return to the factor F= some macro factor; in this case F is unanticipated movement; F is commonly related to security returns Assumption: a broad market index like the S&P500 is the common factor

( ) ( ) b a r r r r e Single Index Model - = + - + Risk Prem f i m f i i Risk Prem Market Risk Prem or Index Risk Prem a = the stock’s expected return if the market’s excess return is zero i (rm - rf) = 0 ßi(rm - rf) = the component of return due to movements in the market index ei = firm specific component, not due to market movements

Risk Premium Format Let: Ri = (ri - rf) Risk premium format Rm = (rm - rf) Risk premium format Ri = ai + ßi(Rm) + ei

Figure 6.11 Scatter Diagram for Dell

Figure 6.12 Various Scatter Diagrams

Components of Risk Market or systematic risk: risk related to the macro economic factor or market index Unsystematic or firm specific risk: risk not related to the macro factor or market index Total risk = Systematic + Unsystematic

Measuring Components of Risk si2 = bi2 sm2 + s2(ei) where; si2 = total variance bi2 sm2 = systematic variance s2(ei) = unsystematic variance

Examining Percentage of Variance Total Risk = Systematic Risk + Unsystematic Risk Systematic Risk/Total Risk = r2 ßi2 s m2 / s2 = r2 bi2 sm2 / (bi2 sm2 + s2(ei)) = r2