Fermat’s Last Theorem by Kelly Oakes. Pierre de Fermat (1601 – 1665) Born in Beaumont-de-Lomagne, 36 miles north- west of Toulouse, in France. He was.

Slides:



Advertisements
Similar presentations
Fermat’s Last Theorem Dr. S. Lawrence ©2005.
Advertisements

Copyright © Cengage Learning. All rights reserved.
Lecture 3 – February 17, 2003.
Complex Numbers 2
With examples from Number Theory
Proving Fermat’s last theorem FLT and lessons on the nature and practice of mathematics.
SPLASH! 2012 QUADRATIC RECIPROCITY Michael Belland.
Fermat’s Last Theorem Jonathan Rigby. Fermat’s last theorem x n +y n =z n Fermats proof by infinite descent x 4+ +y 4 =z 4.
Copyright © Cengage Learning. All rights reserved.
CONTENTS Life of Pierre de Fermat Beginning of Life School Life Work Life Death.
Whiteboardmaths.com © 2004 All rights reserved
Discrete Methods in Mathematical Informatics Lecture 1: What is Elliptic Curve? 9 th October 2012 Vorapong Suppakitpaisarn
22C:19 Discrete Structures Logic and Proof Spring 2014 Sukumar Ghosh.
More Number Theory Proofs Rosen 1.5, 3.1. Prove or Disprove If m and n are even integers, then mn is divisible by 4. The sum of two odd integers is odd.
CSE115/ENGR160 Discrete Mathematics 02/07/12
CSE115/ENGR160 Discrete Mathematics 01/31/12 Ming-Hsuan Yang UC Merced 1.
CSE115/ENGR160 Discrete Mathematics 02/01/11
Number Theory: Fermat’s Last Theorem Fermat’s last conjecture/Wiles’ Theorem: For n>2 the equation x n +y n =z n has no solutions in terms of non-zero.
Pierre de Fermat Born: 17 Aug 1601 in Beaumont-de-Lomagne, France Died: 12 Jan 1665 in Castres, France.
Activity 2-14: The ABC Conjecture
Copyright © Cengage Learning. All rights reserved.
Pierre de Fermat.
Math 409/409G History of Mathematics Pythagorean Triples.
Fermat’s Last Theorem: Journey to the Center of Mathematical Genius (and Excess) Rod Sanjabi.
Fermat’s Last Theorem By: Andy Smith. Fermat’s Professional life Lived Law school Councilor at the parliament of the French city of Toulouse.
Fermat’s Last Theorem Samina Saleem Math5400. Introduction The Problem The seventeenth century mathematician Pierre de Fermat created the Last Theorem.
Number Theory – Introduction (1/22) Very general question: What is mathematics? Possible answer: The search for structure and patterns in the universe.
BY RICKY LIU Fermat’s The last theorem, his proof and the author of the proof.
ELEMENTARY NUMBER THEORY AND METHODS OF PROOF
First Order Logic. This Lecture Last time we talked about propositional logic, a logic on simple statements. This time we will talk about first order.
CS 2210 (22C:019) Discrete Structures Logic and Proof Spring 2015 Sukumar Ghosh.
Many quantities that arise in applications cannot be computed exactly. We cannot write down an exact decimal expression for the number π or for values.
Number Theory Number Theory: A reflection of the basic mathematical endeavor. Exploration Of Patterns: Number theory abounds with patterns and requires.
By: Miguel Vega PIERRE DE FERMAT. BIRTH AND DEATH Pierre was born in Beaumage France on august,20,1601. Died on January 12, 1665 in Casters France.
Methods of Proof. This Lecture Now we have learnt the basics in logic. We are going to apply the logical rules in proving mathematical theorems. Direct.
Fermat By: Andrew and Mavleen. Pierre de Fermat  Born on August 17, 1601  Birthplace: Beaumont-de- Lomagne, France  Died on January12, 1665  Death.
Section 1.8. Section Summary Proof by Cases Existence Proofs Constructive Nonconstructive Disproof by Counterexample Nonexistence Proofs Uniqueness Proofs.
Fermat’s Last Theorem??. Who was Fermat? Born in France Became city councilor in Toulouse Then he became a judge Had a reputation for being distracted.
Whiteboardmaths.com © 2004 All rights reserved
Chapter 11 The Number Theory Revival
Chapter 5 Existence and Proof by contradiction
Methods of Proof Lecture 3: Sep 9. This Lecture Now we have learnt the basics in logic. We are going to apply the logical rules in proving mathematical.
Quit Pierre de Fermat Fermat’s Last Conjecture Prime Numbers Euler’s Conjecture.
Activity 2-15: Elliptic curves
Part 4: Voting Topics - Continued
Activity 1-13: Descent This problem is due to Euler. Task: Show that the equation x 3 + 2y 3 + 4z 3 = 0 has the sole solution (0,
Method of proofs.  Consider the statements: “Humans have two eyes”  It implies the “universal quantification”  If a is a Human then a has two eyes.
22C:19 Discrete Structures Logic and Proof Fall 2014 Sukumar Ghosh.
MATHEMATICAL INNOVATIONS Balakumar R “While pursuing a single problem through the centuries “
Copyright © Cengage Learning. All rights reserved. Sequences and Series.
1 CMSC 250 Chapter 3, Number Theory. 2 CMSC 250 Introductory number theory l A good proof should have: –a statement of what is to be proven –"Proof:"
Mathematical Proof A domino and chessboard problem.
Section 1.8. Proof by Cases Example: Let b = max{a, b} = a if a ≥ b, otherwise b = max{a, b} = b. Show that for all real numbers a, b, c
Methods of Proof Lecture 4: Sep 20 (chapter 3 of the book, except 3.5 and 3.8)
Axioms and Theorems. Remember syllogisms? The Socrates Syllogism All human beings are mortal Socrates is a human being Therefore Socrates is mortal premises.
CS 2210:0001 Discrete Structures Logic and Proof
What is Mathematics? The science (or art?) that deals with numbers, quantities, shapes, patterns and measurement An abstract symbolic communication system.
Direct Proof and Counterexample III: Divisibility
CSE15 Discrete Mathematics 02/08/17
Chapter 4 (Part 1): Induction & Recursion
How Many Ways Can 945 Be Written as the Difference of Squares?
The Number Theory Revival
Predicate Calculus Validity
CS 220: Discrete Structures and their Applications
Methods of Proof Rosen 1.7, 1.8 Lecture 4: Sept 24, 25.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
1.1 Patterns and Inductive Reasoning
14.6 Triple Integrals Seventeenth-Century French mathematician Pierre de Fermat wrote in the margin of his copy of Arithmetica by Diophantus, near the.
Methods of Proof Rosen 1.7, 1.8 Lecture 4: Sept, 2019.
Presentation transcript:

Fermat’s Last Theorem by Kelly Oakes

Pierre de Fermat (1601 – 1665) Born in Beaumont-de-Lomagne, 36 miles north- west of Toulouse, in France. He was a lawyer at the Parlement of Toulouse, and also an amateur mathematician (now widely regarded as "The King of Amateurs“). He is given credit for early developments of calculus, his work on the theory of numbers, inventing the proof technique of infinite descent and Fermat’s factorisation method amongst many other things. During his lifetime, Fermat was known to be very secretive and was a recluse. Very few records of his proofs exist. In fact, many mathematicians doubt his claims because of the difficulty of some of the problems and the limited mathematical tools available to him. Fermat died in 1665, in a town called Castres, 49 miles east of Toulouse.

History Around the year 1640, Fermat wrote, in the margin of his copy of Arithmetica by Diophantus of Alexandria, the following: This is known as Fermat’s Last Theorem, and in more mathematical terms is: “It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in general, any power higher than the second into two like powers. I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.” “The equation x n + y n = z n has no solution for non-zero integers x, y, and z if n is an integer greater than 2.“ It is known as Fermat’s last theorem, not because it was Fermat’s last piece of work, but because it was the last remaining statement that had yet to be proved or independently verified after his death.

Proofs for Special Cases The first case of Fermat’s Last Theorem that was solved was n=4. Fermat himself proved that “the area of a right triangle cannot be equal to a square number”, using a method of infinite descent. This was the only proof in number theory that Fermat left, and implies that FLT is true when n=4. The second case proved (approximately one hundred years later) was n=3, by Euler. He also used a method of infinite descent, but his proof was otherwise very different, which meant that there would be no way to generalise these two special proofs into one that would apply to all cases where n>2. Leonhard Euler

Proofs for Special Cases The proof for n=5 was created by Dirichlet and Legendre in 1825, using a generalisation of Euler's proof for n = 3. A proof for the next prime number, n=7, was found 14 years later by Lamé. From this point onwards, mathematicians tried to find proofs for classes of prime numbers, rather than just demonstrating it one number at a time... Generally, if we had proven FLT to any power n, then the theorem is valid to all the multiples of n. The reason for this is that if the numbers x, y and z are a solution for the power mn, then the numbers x m, y m and z m are a solution to the power of n, which contradicts the fact that FLT has been proved for the power n. From this it follows that the only numbers left to prove FLT for are prime, because all other numbers greater than 2 are multiples of prime numbers.

In 1847, Kummer proved that the theorem was true for all regular primes, which includes all prime numbers below 100, except 2, 37, 59 and 67. Proofs for Special Cases In 1983, Gerd Faltings proved the Mordell conjecture, which implies that for any value of n>2, there are at most finitely many coprime integers x, y and z with x n + y n = y n. Over 100 years later in 1977, Guy Terjanian proved that if p is an odd prime number, and the natural numbers x, y and z satisfy x 2p + y 2p = z 2p, then 2p must divide x or y.

Andrew Wiles Wiles first discovered Fermat’s Last Theorem aged 10, by reading ‘The Last Problem’ by E. T. Bell in his local library. “It looked so simple, and yet all the great mathematicians in history couldn't solve it. Here was a problem that I, a ten year old, could understand and I knew from that moment that I would never let it go. I had to solve it.” He spent his schooldays trying to solve the problem, only stopping while he was at Cambridge studying for his PhD on elliptic curves, a topic which later helped him solve Fermat’s Last Theorem. In 1986 Wiles heard that Ken Ribet had proved that there was a link between the Taniyama-Shimura conjecture and FLT, which meant that his childhood ambition was now a professionally acceptable problem to work on. He decided that he would have to work on the problem in complete isolation, as the interest it would create could interfere with his work, and he wanted to give it his undivided attention.

Andrew Wiles Wiles after completing the proof at the final lecture: “ I think I’ll stop here” In 1993, after 7 years of working on the proof, Wiles finally believed he had completed it. He gave a series of lectures on the subject at the Isaac Newton Institute in Cambridge ending on 23 June His results were then written up for publication, however during this process a subtle error in a crucial part of the argument was discovered. It seemed that he did not have a complete proof after all. It took over a year of work and a little help from Cambridge mathematician Richard Taylor, but eventually Wiles managed to repair the error and finally complete the proof.

The Mathematics of Fermat’s Last Theorem...

Elliptic Curves y 2 = (x + a).(x + b).(x + c), where a, b & c can be any whole number, except zero. The challenge is to identify and quantify the whole solutions to the equations, the solutions differing according to the values of a, b, and c. Elliptic curves, which have been studied since the time of Diophantus, concern cubic equations of the form:

Modular Forms The mathematics of modular forms is much more modern than that of elliptic curves. Modular forms are functions that satisfy rather spectacular and special properties resulting from their surprising array of internal symmetries. They involve complex numbers, which are composed of real and imaginary parts.

Taniyama-Shimura conjecture The Taniyama-Shimura conjecture (or modularity theorem) states that every rational elliptic curve is modular. If... a n + b n = c n is a counterexample to Fermat's Last Theorem, then the elliptic curve... y 2 = x(x - a n )(x + b n ) cannot be modular, thus violating the Shimura-Taniyama conjecture. It was Gerhard Frey that suggested that the conjecture implies Fermat's Last Theorem, and Ken Ribet that later proved it. In 1995, Andrew Wiles proved that the Taniyama-Shimura conjecture was true for semistable elliptic curves, which was enough to prove Fermat’s Last Theorem.

Further Information Mathematics of Fermat’s Last Theorem in more depth. Interview with Andrew Wiles. The “Fermat Corner” on Simon Singh’s website. The Devil and Simon Flagg by Arthur Porges – A Short Story centred around Fermat’s Last Theorem.