Standards 3 Case study Research questions 1) Haskell spec of RDF inference program 2) Soundness and completeness 3) What logics? 4) optimization 5)

Slides:



Advertisements
Similar presentations
Ontology-Based Computing Kenneth Baclawski Northeastern University and Jarg.
Advertisements

Basics of Recursion Programming with Recursion
Mathematical Preliminaries
Inference in First-Order Logic
Solving Systems of Equations using Substitution
Natural Language Systems, Department of Informatics, University of Hamburg NATS IR in WWW Dozentin: C. Vertan Autor: M. Hoffmann RDF Resource Description.
Slide 1 Insert your own content. Slide 2 Insert your own content.
1 Search and Navigate Web Ontologies Li Ding Tetherless World Constellation Rensselaer Polytechnic Institute Aug 22, 2008.
Exploiting ebXML Registry Semantics in the eHealth Domain*
Analysis of Algorithms
Combining Like Terms. Only combine terms that are exactly the same!! Whats the same mean? –If numbers have a variable, then you can combine only ones.
Knowledge Creation Tools for DAML Grit Denker, Jerry R. Hobbs, David Martin Srini Narayanan, Richard Waldinger SRI International.
DAML PI Meeting Status Briefing UMBC, JHU APL, MIT Sloan Tim Finin Jim Mayfield Benjamin Grosof February 12, 2002 tell register JHU APL Haircut retrieval.
Problem Solving & Program Design in C Sixth Edition By Jeri R. Hanly & Elliot B. Koffman 1-1.
Graph of a Curve Continuity This curve is _____________These curves are _____________ Smoothness This curve is _____________These curves are _____________.
Languages on the Semantic Web Frank van Harmelen Vrije Universiteit Amsterdam Ian Horrocks University of Manchester.
Determine Eligibility Chapter 4. Determine Eligibility 4-2 Objectives Search for Customer on database Enter application signed date and eligibility determination.
0 - 0.
Addition Facts
8-2: Solving Systems of Equations using Substitution
Copyright , SPSS Inc. 1 Practical solutions for dealing with missing data Rob Woods Senior Consultant.
CS4026 Formal Models of Computation Running Haskell Programs – power.
Formal Models of Computation Part II The Logic Model
Enterprise Java and Data Services Designing for Broadly Available Grid Data Access Services.
N ATIONAL E NERGY R ESEARCH S CIENTIFIC C OMPUTING C ENTER TotalView on the T3E and IBM SP Systems NERSC User Services June 12, 2000.
23 July 2012 Thomas Bergauer (HEPHY Vienna) Belle II SVD Construction Database 12 th B2GM Bad Aibling.
1 First order theories (Chapter 1, Sections 1.4 – 1.5)
First Order Logic Logic is a mathematical attempt to formalize the way we think. First-order predicate calculus was created in an attempt to mechanize.
Logic Programming Two possible work modes: 1.At the lab: Use SICstus Prolog. To load a prolog file (*.pl or *.pro extension) to the interpreter, use: ?-
5.9 + = 10 a)3.6 b)4.1 c)5.3 Question 1: Good Answer!! Well Done!! = 10 Question 1:
SYSTEMS OF EQUATIONS.
1 ISWC-2003 Sanibel Island, FL IMG, University of Manchester Jeff Z. Pan 1 and Ian Horrocks 1,2 {pan | 1 Information Management.
Constraint Satisfaction Problems Russell and Norvig: Chapter
Logic Programming Lecture 1: Getting started. Getting started We’ll use SICStus Prolog Free for UofE students Available on all DICE machines
CH-4 Ontologies, Querying and Data Integration. Introduction to RDF(S) RDF stands for Resource Description Framework. RDF is a standard for describing.
Past Tense Probe. Past Tense Probe Past Tense Probe – Practice 1.
Lab # 03- SS Basic Graphic Commands. Lab Objectives: To understand M-files principle. To plot multiple plots on a single graph. To use different parameters.
Query Answering for OWL-DL with Rules Boris Motik Ulrike Sattler Rudi Studer.
Test B, 100 Subtraction Facts
Problems Title cfr.Prolog: database of facts, rules, query and solutions.
1 An inference engine for the semantic web Naudts Guido Student at the Open University Netherlands.
1 Solving problems by searching Chapter 3. 2 Why Search? To achieve goals or to maximize our utility we need to predict what the result of our actions.
10-Sep-02 Page 1 Gadjah Mada University - Yogyakarta - Indonesia Gadjah Mada University10-Sep-02 Page 1 Gadjah Mada University - Yogyakarta - Indonesia.
An Algorithm for Constructing Parsimonious Hybridization Networks with Multiple Phylogenetic Trees Yufeng Wu Dept. of Computer Science & Engineering University.
2 x0 0 12/13/2014 Know Your Facts!. 2 x1 2 12/13/2014 Know Your Facts!
Bottoms Up Factoring. Start with the X-box 3-9 Product Sum
2.4 – Factoring Polynomials Tricky Trinomials The Tabletop Method.
X-box Factoring. X- Box 3-9 Product Sum Factor the x-box way Example: Factor 3x 2 -13x (3)(-10)= x 2x 3x 2 x-5 3x +2.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 13 Slide 1 Application architectures.
Use addition to eliminate a variable
Semantics for Valid XML Documents Harold Boley Dagstuhl Seminar Semantics in Databases Jan. 7-12, 2001.
Distributed Constraint Satisfaction Problems M OHSEN A FSHARCHI.
16.410: Eric Feron / MIT, Spring 2001 Introduction to the Simplex Method to solve Linear Programs Eric Feron Spring 2001.
5 x4. 10 x2 9 x3 10 x9 10 x4 10 x8 9 x2 9 x4.
EMIS 8374 LP Review: The Ratio Test. 1 Main Steps of the Simplex Method 1.Put the problem in row-0 form. 2.Construct the simplex tableau. 3.Obtain an.
Prolog The language of logic. History Kowalski: late 60’s Logician who showed logical proof can support computation. Colmerauer: early 70’s Developed.
Prolog The language of logic. History Kowalski: late 60’s Logician who showed logical proof can support computation. Colmerauer: early 70’s Developed.
27 January Semantically Coordinated E-Market Semantic Web Term Project Prepared by Melike Şah 27 January 2005.
Peer-to-Peer Networking for Distributed Learning Repositories: The Edutella Network Diplomarbeit von Boris Wolf.
CSE 425: Logic Programming I Logic and Programs Most programs use Boolean expressions over data Logic statements can express program semantics –I.e., axiomatic.
The Web of data with meaning... By Michael Griffiths.
Jigar Gaglani.  A Programming language is a notational system for describing computations in a machine and human readable form.
Proof System HY-566. Proof layer Next layer of SW is logic and proof layers. – allow the user to state any logical principles, – computer can to infer.
Exploring Windows 98 and Essential Computing Concepts - Chapter 2 1 Exploring the Internet Chapter 2 Search Engines: Finding Information on the Web.
Notes for Chapter 12 Logic Programming The AI War Basic Concepts of Logic Programming Prolog Review questions.
Dr. Bhavani Thuraisingham The University of Texas at Dallas Trustworthy Semantic Webs March 25, 2011 Data and Applications Security Developments and Directions.
1 Knowledge Based Systems (CM0377) Lecture 6 (last modified 20th February 2002)
Semantic Web for the Working Ontologist Dean Allemang Jim Hendler SNU IDB laboratory Last modified,
Semantic Web for the Working Ontologist Dean Allemang Jim Hendler SNU IDB laboratory.
Jess Architecture Diagram WORKING MEMORY INFERENCE ENGINE EXECUTION ENGINE PATTERN MATCHER RULE BASE Here you can see how all the parts fit.
Presentation transcript:

Standards

3 Case study

Research questions 1) Haskell spec of RDF inference program 2) Soundness and completeness 3) What logics? 4) optimization 5) inconsistency

RDF / DEMO Database: Regels: child(X, Y), child(Y, Z) :> grandparent(Z, X). grandparent(Z, X), gender(Z, female) :> grandmother(Z, X). Feiten: child(christine, elza). child(wim, christine). gender(elza, female). Query: grandmother(Z, X).

WWW aspects subqueries closed / open world verifiability / trust -> origin inconsistencies

Implementation

Inference engine for RDF Two versions: 1)Classic structure, well tested 2)Better adapted to the semantic web

Search Tree / DEMO

Finite State Machine

Open World Consequences An open set has no borders An (open?) set has no complement An element belongs to set A or set B or not known (no law of excluded middle) There is no universal quantifier for open sets

Research questions 1) Haskell spec of RDF inference program 2) Soundness and completeness 3) What logics? 4) optimization 5) inconsistency

Graph syntax of RDF

Graph theory

Research questions 1) Haskell spec of RDF inference program 2) Soundness and completeness 3) What logics? 4) optimization 5) inconsistency

Logic Constructive logic cfr. Escher - architect Each triple in a proof must exist Verifiability

RDF Graph URI: gedcom# gd:sun(def:Frank,def:Christine).

Research questions 1) Haskell spec of RDF inference program 2) Soundness and completeness 3) What logics? 4) optimization 5) inconsistency

Optimization / DEMO Question: grandmother(Z, X) Solution: fact -> rule -> …. -> rule -> solution = grandmother(elza,wim) Specific rule: t1, t2, t3,.., tn --> grandmother(Z,X) child(X,Y), child(Y,Z), gender(Z, female):> grandmother(Z,X). Other

Research questions 1) Haskell spec of RDF inference program 2) Soundness and completeness 3) What logics? 4) optimization 5) inconsistency

Inconsistencies Importance of selected logic No Ex Contradictione Quodlibet Trust system Wait and see

Research questions 1) Haskell spec of RDF inference program 2) Soundness and completeness 3) What logics? 4) optimization 5) inconsistency

26 Case study

DEMO

Questions? ?

DEMO 1 start Enter command (? for help): ? h : help ? : help q : exit s : perform a single inference step g : go; stop working interactively m : menu e : execute menu item qe : enter a query p : print the graphs

DEMO 2 m&&&& You entered:m&&&&& Please, try again. m Type the command e.g. "e pro11." pro11 authentication example pro21 flight simulation pro31 subClassOf example pro41 demo example pro51 gedcom Enter "e item".

DEMO 3 Enter "e item". e pro41 RDFProlog version 2.0 Reading files... Enter command (? for help): s step: goal: grandmother(_1?Z,_1?X)./10 goallist: grandmother(_1?Z,_1?X)./10 substitution: [] history:

DEMO 4 s step: goal: grandparent(1$_$_2?Z,1$_$_2?X)./2 goallist: grandparent(1$_$_2?Z,1$_$_2?X)./2 gender(1$_$_2?Z,female)./2 substitution: [(_1?Z,1$_$_2?Z)(_1?X,1$_$_2?X)] history: (grandparent(1$_$_2?Z,1$_$_2?X),gender(1$_$_2?Z,female) :> grandmother(1$_$_2?Z,1$_$_2?X)./2,grandmother(_1?Z,_1?X)./10)

DEMO 5 s step: goal: child(2$_$_1?X,2$_$_1?Y)./2 goallist: child(2$_$_1?X,2$_$_1?Y)./2 child(2$_$_1?Y,2$_$_1?Z)./2 gender(1$_$_2?Z,female)./2 substitution: [(_1?Z,1$_$_2?Z)(_1?X,1$_$_2?X)(1$_$_2?Z,2$_$_1?Z)(1$_$_2?X,2$_$_1?X)] history: (child(2$_$_1?X,2$_$_1?Y),child(2$_$_1?Y,2$_$_1?Z) :> grandparent(2$_$_1?Z,2$_$_1?X)./2,grandparent(1$_$_2?Z,1$_$_2?X)./2) (grandparent(1$_$_2?Z,1$_$_2?X),gender(1$_$_2?Z,female) :> grandmother(1$_$_2?Z,1$_$_2?X)./2,grandmother(_1?Z,_1?X)./10)

DEMO 6 s step: goal: /0 goallist: /0 child(2$_$_1?Y,2$_$_1?Z)./2 gender(1$_$_2?Z,female)./2 substitution: [(_1?Z,1$_$_2?Z)(_1?X,1$_$_2?X)(1$_$_2?Z,2$_$_1?Z)(1$_$_2?X,2$_$_1?X)(2$_$_1?X,christine)(2 $_$_1?Y,elza)] history: (child(christine,elza)./2,child(2$_$_1?X,2$_$_1?Y)./2) (child(2$_$_1?X,2$_$_1?Y),child(2$_$_1?Y,2$_$_1?Z) :> grandparent(2$_$_1?Z,2$_$_1?X)./2,grandparent(1$_$_2?Z,1$_$_2?X)./2) (grandparent(1$_$_2?Z,1$_$_2?X),gender(1$_$_2?Z,female) :> grandmother(1$_$_2?Z,1$_$_2?X)./2,grandmother(_1?Z,_1?X)./10)

DEMO 7 s step: goal: child(2$_$_1?Y,2$_$_1?Z)./2 goallist: child(2$_$_1?Y,2$_$_1?Z)./2 gender(1$_$_2?Z,female)./2 substitution: [(_1?Z,1$_$_2?Z)(_1?X,1$_$_2?X)(1$_$_2?Z,2$_$_1?Z)(1$_$_2?X,2$_$_1?X)(2$_$_1?X,christine)(2 $_$_1?Y,elza)] history: (child(christine,elza)./2,child(2$_$_1?X,2$_$_1?Y)./2) (child(2$_$_1?X,2$_$_1?Y),child(2$_$_1?Y,2$_$_1?Z) :> grandparent(2$_$_1?Z,2$_$_1?X)./2,grandparent(1$_$_2?Z,1$_$_2?X)./2) (grandparent(1$_$_2?Z,1$_$_2?X),gender(1$_$_2?Z,female) :> grandmother(1$_$_2?Z,1$_$_2?X)./2,grandmother(_1?Z,_1?X)./10)

DEMO 8 s **** No unification; path aborted. **** s **** Backtrack done. **** s

DEMO 9 s step: goal: /0 goallist: /0 child(2$_$_1?Y,2$_$_1?Z)./2 gender(1$_$_2?Z,female)./2 substitution: [(_1?Z,1$_$_2?Z)(_1?X,1$_$_2?X)(1$_$_2?Z,2$_$_1?Z)(1$_$_2?X,2$_$_1?X)(2$_$_1?X,wim)(2$_$_ 1?Y,christine)] history: (child(wim,christine)./2,child(2$_$_1?X,2$_$_1?Y)./2) (child(2$_$_1?X,2$_$_1?Y),child(2$_$_1?Y,2$_$_1?Z) :> grandparent(2$_$_1?Z,2$_$_1?X)./2,grandparent(1$_$_2?Z,1$_$_2?X)./2) (grandparent(1$_$_2?Z,1$_$_2?X),gender(1$_$_2?Z,female) :> grandmother(1$_$_2?Z,1$_$_2?X)./2,grandmother(_1?Z,_1?X)./10)

DEMO 10 s step: goal: child(2$_$_1?Y,2$_$_1?Z)./2 goallist: child(2$_$_1?Y,2$_$_1?Z)./2 gender(1$_$_2?Z,female)./2 substitution: [(_1?Z,1$_$_2?Z)(_1?X,1$_$_2?X)(1$_$_2?Z,2$_$_1?Z)(1$_$_2?X,2$_$_1?X)(2$_$_1?X,wim)(2$_$_ 1?Y,christine)] history: (child(wim,christine)./2,child(2$_$_1?X,2$_$_1?Y)./2) (child(2$_$_1?X,2$_$_1?Y),child(2$_$_1?Y,2$_$_1?Z) :> grandparent(2$_$_1?Z,2$_$_1?X)./2,grandparent(1$_$_2?Z,1$_$_2?X)./2) (grandparent(1$_$_2?Z,1$_$_2?X),gender(1$_$_2?Z,female) :> grandmother(1$_$_2?Z,1$_$_2?X)./2,grandmother(_1?Z,_1?X)./10)

DEMO 11 s step: goal: /0 goallist: /0 gender(1$_$_2?Z,female)./2 substitution: [(_1?Z,1$_$_2?Z)(_1?X,1$_$_2?X)(1$_$_2?Z,2$_$_1?Z)(1$_$_2?X,2$_$_1?X)(2$_$_1?X,wim)(2$_$_ 1?Y,christine)(2$_$_1?Z,elza)] history: (child(christine,elza)./2,child(christine,2$_$_1?Z)./2) (child(wim,christine)./2,child(2$_$_1?X,2$_$_1?Y)./2) (child(2$_$_1?X,2$_$_1?Y),child(2$_$_1?Y,2$_$_1?Z) :> grandparent(2$_$_1?Z,2$_$_1?X)./2,grandparent(1$_$_2?Z,1$_$_2?X)./2) (grandparent(1$_$_2?Z,1$_$_2?X),gender(1$_$_2?Z,female) :> grandmother(1$_$_2?Z,1$_$_2?X)./2,grandmother(_1?Z,_1?X)./10)

DEMO 12 s step: goal: gender(1$_$_2?Z,female)./2 goallist: gender(1$_$_2?Z,female)./2 substitution: [(_1?Z,1$_$_2?Z)(_1?X,1$_$_2?X)(1$_$_2?Z,2$_$_1?Z)(1$_$_2?X,2$_$_1?X)(2$_$_1?X,wim)(2$_$_ 1?Y,christine)(2$_$_1?Z,elza)] history: (child(christine,elza)./2,child(christine,2$_$_1?Z)./2) (child(wim,christine)./2,child(2$_$_1?X,2$_$_1?Y)./2) (child(2$_$_1?X,2$_$_1?Y),child(2$_$_1?Y,2$_$_1?Z) :> grandparent(2$_$_1?Z,2$_$_1?X)./2,grandparent(1$_$_2?Z,1$_$_2?X)./2) (grandparent(1$_$_2?Z,1$_$_2?X),gender(1$_$_2?Z,female) :> grandmother(1$_$_2?Z,1$_$_2?X)./2,grandmother(_1?Z,_1?X)./10)

DEMO 13 s step: goal: /0 goallist: /0 substitution: [(_1?Z,1$_$_2?Z)(_1?X,1$_$_2?X)(1$_$_2?Z,2$_$_1?Z)(1$_$_2?X,2$_$_1?X)(2$_$_1?X,wim)(2$_$_ 1?Y,christine)(2$_$_1?Z,elza)] history: (gender(elza,female)./2,gender(elza,female)./2) (child(christine,elza)./2,child(christine,2$_$_1?Z)./2) (child(wim,christine)./2,child(2$_$_1?X,2$_$_1?Y)./2) (child(2$_$_1?X,2$_$_1?Y),child(2$_$_1?Y,2$_$_1?Z) :> grandparent(2$_$_1?Z,2$_$_1?X)./2,grandparent(1$_$_2?Z,1$_$_2?X)./2) (grandparent(1$_$_2?Z,1$_$_2?X),gender(1$_$_2?Z,female) :> grandmother(1$_$_2?Z,1$_$_2?X)./2,grandmother(_1?Z,_1?X)./10)

DEMO 14 solution: Solution: Substitution: [(_1?Z,1$_$_2?Z)(_1?X,1$_$_2?X)(1$_$_2?Z,2$_$_1?Z)(1$_$_2?X,2$_$_1?X)(2$_$_1?X,wim)(2$_$_ 1?Y,christine)(2$_$_1?Z,elza)] Proof: (gender(elza,female)./2,gender(elza,female)./2) (child(christine,elza)./2,child(christine,elza)./2) (child(wim,christine)./2,child(wim,christine)./2) (child(wim,christine),child(christine,elza) :> grandparent(elza,wim)./2,grandparent(elza,wim)./2) (grandparent(elza,wim),gender(elza,female) :> grandmother(elza,wim)./2,grandmother(elza,wim)./10) General rule: "gender(X2,female),child(X1,X2),child(X3,X1) :> grandmother(X2,X3)."

Variable numbering 1 Enter "e item". e pro41 RDFProlog version 2.0 Reading files... Enter command (? for help): s step: goal: grandmother(_1?Z,_1?X)./10 goallist: grandmother(_1?Z,_1?X)./10 substitution: [] history:

Variable numbering 2 s step: goal: grandparent(1$_$_2?Z,1$_$_2?X)./2 goallist: grandparent(1$_$_2?Z,1$_$_2?X)./2 gender(1$_$_2?Z,female)./2 substitution: [(_1?Z,1$_$_2?Z)(_1?X,1$_$_2?X)] history: (grandparent(1$_$_2?Z,1$_$_2?X),gender(1$_$_2?Z,female) :> grandmother(1$_$_2?Z,1$_$_2?X)./2,grandmother(_1?Z,_1?X)./10)