Warm Up Lesson Presentation Lesson Quiz.

Slides:



Advertisements
Similar presentations
Objective Apply the formula for midpoint.
Advertisements

Surface Area of 10-5 Pyramids and Cones Warm Up Lesson Presentation
Surface Area of 10-5 Pyramids and Cones Warm Up Lesson Presentation
Warm Up The area of a circle is square feet. Find the perimeter of the circle in inches A triangle’s sides are 24, 25 and 7. How long is the shortest.
Warm Up 1. Graph A (–2, 3) and B (1, 0). 2. Find CD. 8
Michael Reyes MTED 301 Section 1-2. Subject: Geometry Grade Level:9-10 Lesson: The Distance Formula Objective: California Mathematics Content Standard.
Section 1-6 The Coordinate Plane SPI 21E: determine the distance and midpoint when given the coordinates of two points Objectives: Find distance between.
1-6 Midpoint and Distance in the Coordinate Plane Warm Up
Midpoint Formula, & Distance Formula
1-6 Midpoint and Distance in the Coordinate Plane Warm Up
Chapter 1.7 Midpoint and Distance in a Coordinate Plane
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
1-2 Measuring Segments Objectives
Geometry 1-6 Midpoint and Distance. Vocabulary Coordinate Plane- a plane divided into four regions by a horizontal line (x-axis) and a vertical line (y-axis).
1-6 Midpoint and Distance in the Coordinate Plane Warm Up
Warm Up 1. Graph A (–2, 3) and B (1, 0). 2. Find CD. 8
1-3B Midpoint and Distance in the Coordinate Plane Warm Up
Holt Geometry 1-6 Midpoint and Distance in the Coordinate Plane Develop and apply the formula for midpoint. Use the Distance Formula to find the distance.
8-1, 1-8 Pythagorean Theorem, Distance Formula, Midpoint Formula
The Distance and Midpoint Formulas
Holt McDougal Geometry 1-6 Midpoint and Distance in the Coordinate Plane 1-6 Midpoint and Distance in the Coordinate Plane Holt Geometry Warm Up Warm Up.
Applying the Pythagorean Theorem and Its Converse Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson.
Warm Up C. Warm Up C Objectives Use the Distance Formula and the Pythagorean Theorem to find the distance between two points.
1-6 Midpoint and distance in the coordinate plane
Holt Geometry 1-6 Midpoint and Distance in the Coordinate Plane Happy Monday!!! Please take out your assignment from Friday and be ready to turn it in.
1-5 Midpoints and Segment Congruence Lesson Presentation Holt Geometry.
Applying the Pythagorean Theorem and Its Converse 3-9 Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson.
Midpoint and Distance in the Coordinate Plane SEI.3.AC.4: Use, with and without appropriate technology, coordinate geometry to represent and solve problems.
Homework Lesson 9.1 page 567 #22-27 ALL Lesson 1-3: Formulas 1.
Objective Apply the formula for midpoint.
Warm Up 1. Graph A (–2, 3) and B (1, 0). 2. Find CD Find the coordinate of the midpoint of CD. –2 4. Simplify. 4.
Holt McDougal Geometry 1-6 Midpoint and Distance in the Coordinate Plane.
Holt Geometry 1-6 Midpoint and Distance in the Coordinate Plane 1-6 Midpoint and Distance in the Coordinate Plane Holt Geometry Warm Up Warm Up Lesson.
Objectives Develop and apply the formula for midpoint.
Midpoint And Distance in the Coordinate Plane
Midpoint and Distance in the Coordinate Plane
1-7 Warm Up Lesson Presentation Lesson Quiz
1-6 Midpoint and Distance in the Coordinate Plane Warm Up
Distance Midpoint Distance Formula Pythagorean Theorem
1. Graph A (–2, 3) and B (1, 0). 2. Find CD. 8 –2
Midpoint And Distance in the Coordinate Plane
Lesson 2.7 Core Focus on Geometry The Distance Formula.
1-6 Midpoint and Distance in the Coordinate Plane Warm Up
Objectives Develop and apply the formula for midpoint.
Objectives: Find distance between two points in the coordinate plane
Midpoint and Distance in the Coordinate Plane
Distance on the Coordinate Plane
Pythagorean Theorem and Distance
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
1-6 Midpoint & Distance in the Coordinate Plane
Objectives Develop and apply the formula for midpoint.
In the diagram at the left, AB is a horizontal line segment.
1-6 Midpoint and Distance in the Coordinate Plane Warm Up
1-6 Midpoint and Distance in the Coordinate Plane Warm Up
Warm Up 1. Graph A (–2, 4) and B (1, 0). 2. Find CD.
In the diagram at the left, AB is a horizontal line segment.
Warm Up Solve each equation. 1. 2x – 6 = 7x – /4 x – 6 = 220
Objectives Develop and apply the formula for midpoint.
Rigor : Develop and apply the formulas for midpoint and distance.
1-3 Vocabulary coordinate plane midpoint segment bisector leg
Midpoints and Distance
1.6 Midpoint and Distance in the Coordinate Plane
Lesson 8.11 distance and midpoint formula
1-6 Midpoint and Distance in the Coordinate Plane Warm Up
Warm Up 1. Graph A (–2, 3) and B (1, 0). 2. Find CD.
1-6 Midpoint and Distance in the Coordinate Plane Warm Up
Objectives Develop and apply the formula for midpoint.
Warm-up (YOU NEED A CALCLULATOR FOR THIS UNIT!)
1-6: Midpoint and Distance
Warm Up( Add to HW) Find the missing side length of each right triangle with legs a and b and hypotenuse c. 1. a = 7, b = c = 15, a = 9 c = 25 b.
Presentation transcript:

Warm Up Lesson Presentation Lesson Quiz

Warm Up Lesson Presentation Lesson Quiz

Warm Up 1. Graph A (4, 2), B (6,–1) and C (–1, 3) 2. What type of triangle is formed by the points A, B and C? Obtuse 4. Simplify. 5

California Standards 17.0 Students prove theorems by using coordinate geometry, including the midpoint of a line segment, the distance formula, and various forms of equations of lines and circles. Homework CH1-8 (Pg. 56-57) Even numbers

Objectives Develop and apply the formula for midpoint. Use the Distance Formula and the Pythagorean Theorem to find the distance between two points.

Vocabulary coordinate plane leg hypotenuse

Review A coordinate plane is a plane that is divided into four regions by a horizontal line (x-axis) and a vertical line (y-axis) . The location, or coordinates, of a point are given by an ordered pair (x, y).

Review You can find the midpoint of a segment by using the coordinates of its endpoints. Calculate the average of the x-coordinates and the average of the y-coordinates of the endpoints.

Review

To make it easier to picture the problem, plot the segment’s endpoints on a coordinate plane. Helpful Hint

Example 1: Finding the Coordinates of a Midpoint Find the coordinates of the midpoint of PQ with endpoints P(–8, 3) and Q(–2, 7). = (–5, 5)

TEACH! Example 1 Find the coordinates of the midpoint of EF with endpoints E(–2, 3) and F(5, –3).

Example 2 Find the coordinates of the midpoint of QS with endpoints Q(3, 5) and F(7, –9). cont

TEACH! Example 2 S is the midpoint of RT. R has coordinates (–6, –1), and S has coordinates (–1, 1). Find the coordinates of T. Step 1 Let the coordinates of T equal (x, y). Step 2 Use the Midpoint Formula:

TEACH! Example 2 Continued Step 3 Find the x-coordinate. Set the coordinates equal. Multiply both sides by 2. –2 = –6 + x Simplify. 2 = –1 + y + 1 + 6 +6 Add. 4 = x Simplify. 3 = y The coordinates of T are (4, 3).

The Ruler Postulate can be used to find the distance between two points on a number line. The Distance Formula is used to calculate the distance between two points in a coordinate plane.

Example 3: Using the Distance Formula Find FG and JK. Then determine whether FG  JK. Step 1 Find the coordinates of each point by visual inspection. F(1, 2), G(5, 5), J(–4, 0), K(–1, –3)

Example 3 Continued Step 2 Use the Distance Formula.

TEACH! Example 3 Find EF and GH. Then determine if EF  GH. Step 1 Find the coordinates of each point. E(–2, 1), F(–5, 5), G(–1, –2), H(3, 1)

TEACH! Example 3 Continued Step 2 Use the Distance Formula.

You can also use the Pythagorean Theorem to find the distance between two points in a coordinate plane. In a right triangle, the two sides that form the right angle are the legs. The side across from the right angle that stretches from one leg to the other is the hypotenuse. In the diagram, a and b are the lengths of the shorter sides, or legs, of the right triangle. The longest side is called the hypotenuse and has length c.

Example 4: Finding Distances in the Coordinate Plane Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from D(3, 4) to E(–2, –5).

Example 4 Continued Method 1 Use the Distance Formula. Substitute the values for the coordinates of D and E into the Distance Formula.

Example 4 Continued Method 2 Use the Pythagorean Theorem. Count the units for sides a and b. a = 5 and b = 9. c2 = a2 + b2 = 52 + 92 = 25 + 81 = 106 c = 10.3

TEACH! Example 4a Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S. R(3, 2) and S(–3, –1) Method 1 Use the Distance Formula. Substitute the values for the coordinates of R and S into the Distance Formula.

TEACH! Example 4a Continued Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S. R(3, 2) and S(–3, –1)

TEACH! Example 4a Continued Method 2 Use the Pythagorean Theorem. Count the units for sides a and b. a = 6 and b = 3. c2 = a2 + b2 = 62 + 32 = 36 + 9 = 45

TEACH! Example 4b Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S. R(–4, 5) and S(2, –1) Method 1 Use the Distance Formula. Substitute the values for the coordinates of R and S into the Distance Formula.

TEACH! Example 4b Continued Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S. R(–4, 5) and S(2, –1)

Check It Out! Example 4b Continued Method 2 Use the Pythagorean Theorem. Count the units for sides a and b. a = 6 and b = 6. c2 = a2 + b2 = 62 + 62 = 36 + 36 = 72

Example 5: Sports Application A player throws the ball from first base to a point located between third base and home plate and 10 feet from third base. What is the distance of the throw, to the nearest tenth?

Example 5 Continued Set up the field on a coordinate plane so that home plate H is at the origin, first base F has coordinates (90, 0), second base S has coordinates (90, 90), and third base T has coordinates (0, 90). The target point P of the throw has coordinates (0, 80). The distance of the throw is FP.

TEACH! Example 5 The center of the pitching mound has coordinates (42.8, 42.8). When a pitcher throws the ball from the center of the mound to home plate, what is the distance of the throw, to the nearest tenth?  60.5 ft

Lesson Quiz: Part I 1. Find the coordinates of the midpoint of MN with endpoints M(-2, 6) and N(8, 0). (3, 3) 2. K is the midpoint of HL. H has coordinates (1, –7), and K has coordinates (9, 3). Find the coordinates of L. (17, 13) 3. Find the distance, to the nearest tenth, between S(6, 5) and T(–3, –4). 12.7 4. The coordinates of the vertices of ∆ABC are A(2, 5), B(6, –1), and C(–4, –2). Find the perimeter of ∆ABC, to the nearest tenth. 26.5

Lesson Quiz: Part II 5. Find the lengths of AB and CD and determine whether they are congruent.