Zentralanstalt für Meteorologie und Geodynamik 1. Comparison of HOM, SPLIDHOM and INTERP 2. Ideas for the daily benchmark dataset (temperature) Christine.

Slides:



Advertisements
Similar presentations
ALARO-0 at ZAMG Experiences, verification, identified problems, ….
Advertisements

Silk Snapper - Analysis of size-frequency Todd Gedamke (SEFSC) Photo from:
Zentralanstalt für Meteorologie und Geodynamik Calibrating the ECMWF EPS 2m Temperature and 10m Wind Speed for Austrian Stations Sabine Radanovics.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 40.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 38.
C O M P U T A T I O N A L R E S E A R C H D I V I S I O N Application of Generalized Extreme Value theory to coupled general circulation models Michael.
The new German project KLIWEX-MED: Changes in weather and climate extremes in the Mediterranean basin Andreas Paxian, University of Würzburg MedCLIVAR.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Extended range forecasts at MeteoSwiss: User experience.
Measurement and assessment of change What it the status quo in environmental science? In time – A simple trend line – A p-value or a 95% confidence interval.
Zentralanstalt für Meteorologie und Geodynamik Atmospheric stability in urban areas detected by ultrasonic anemometers Martin Piringer, August Kaiser.
Zentralanstalt für Meteorologie und Geodynamik A re-evaluation of the role of subsidence in valley and basin warming Thomas Haiden.
WESPAC 06 K. Wirth 1 Community Response to Aircraft Noise Exposure over Time Katja Wirth Kumamoto University, Japan Mark Brink & Christoph Schierz ETH.
Oil & Gas Final Sample Analysis April 27, Background Information TXU ED provided a list of ESI IDs with SIC codes indicating Oil & Gas (8,583)
USING THE CLA TO INFORM CAMPUS PLANNING Anne L. Hafner Campus WASC Faculty Coordinator Winter 2008.
1 McGill University Department of Civil Engineering and Applied Mechanics Montreal, Quebec, Canada.
Environmental Data Analysis with MatLab Lecture 15: Factor Analysis.
Literature Review Kathryn Westerman Oliver Smith Enrique Hernandez Megan Fowler.
SECONDARY VALIDATION - RAINFALL DATA PRIMARY VALIDATION ALREADY DONE *ON INDIVIDUAL STATION BASIS SECONDARY VALIDATION *IDENTIFY SUSPECT VALUES BY HAVING.
Benchmark database based on surrogate climate records Victor Venema.
Short-term, platform- like inhomogeneities in observed climatic time series Peter Domonkos Centre for Climate Change University Rovira i Virgili, Tortosa,
Past and future changes in temperature extremes in Australia: a global context Workshop on metrics and methodologies of estimation of extreme climate events,
Stratospheric Temperature Variations and Trends: Recent Radiosonde Results Dian Seidel, Melissa Free NOAA Air Resources Laboratory Silver Spring, MD SPARC.
Benchmark database inhomogeneous data, surrogate data and synthetic data Victor Venema.
Sorin CHEVAL*, Tamás SZENTIMREY**, Ancuţa MANEA*** *National Meteorological Administration, Bucharest, Romania and Euro-Mediterranean Centre for Climate.
Using ranking and DCE data to value health states on the QALY scale using conventional and Bayesian methods Theresa Cain.
Outline Further Reading: Chapter 09 of the text book - climate controls - temperature and precipitation influences - climate classification methodology.
Daily Stew Kickoff – 27. January 2011 First Results of the Daily Stew Project Ralf Lindau.
OECD Short-Term Economic Statistics Working PartyJune Analysis of revisions for short-term economic statistics Richard McKenzie OECD OECD Short.
Benchmark database inhomogeneous data, surrogate data and synthetic data Victor Venema.
Detected Inhomogeneities In Wind Direction And Speed Data From Ireland Predrag Petrović Republic Hydrometeorological Service of Serbia Mary Curley Met.
Two and a half problems in homogenization of climate series concluding remarks to Daily Stew Ralf Lindau.
Nynke Hofstra and Mark New Oxford University Centre for the Environment Trends in extremes in the ENSEMBLES daily gridded observational datasets for Europe.
Utskifting av bakgrunnsbilde: -Høyreklikk på lysbildet og velg «Formater bakgrunn» -Under «Fyll», velg «Bilde eller tekstur» og deretter «Fil…» -Velg ønsket.
Solid and liquid precipitation in major river catchments originating in the European Alps Klaus Haslinger, Barbara Chimani, Reinhard Böhm Zentralanstalt.
Benchmark dataset processing P. Štěpánek, P. Zahradníček Czech Hydrometeorological Institute (CHMI), Regional Office Brno, Czech Republic, COST-ESO601.
COSTOC Olivier MestreMétéo-FranceFrance Ingebor AuerZAMGAustria Enric AguilarU. Rovirat i VirgiliSpain Paul Della-MartaMeteoSwissSwitzerland Vesselin.
Extrapolation of Extreme Response for Wind Turbines based on Field Measurements Authors: Henrik Stensgaard Toft, Aalborg University, Denmark John Dalsgaard.
Changes in Floods and Droughts in an Elevated CO 2 Climate Anthony M. DeAngelis Dr. Anthony J. Broccoli.
SIXTH SEMINAR FOR HOMOGENIZATION AND QUALITY CONTROL IN CLIMATOLOGICAL DATABASES AND COST ES-0601 “HOME” ACTION MANAGEMENT COMMITTEE AND WORKING GROUPS.
EVACLIM – a process orientated evaluation of climate simulations for Europe and the Greater Alpine Region Klaus Haslinger, Ivonne Anders, Maja Zuvela-Aloise,
HOME-ES601WG-1 Report to the 2nd MC, Vienna 23/11/2007 WG1 REPORT TO THE 2nd MC Enric Aguilar URV, Tarragona, Spain
Correction of daily values for inhomogeneities P. Štěpánek Czech Hydrometeorological Institute, Regional Office Brno, Czech Republic
Simulations of present climate temperature and precipitation episodes for the Iberian Peninsula M.J. Carvalho, P. Melo-Gonçalves and A. Rocha CESAM and.
Quality control of daily data on example of Central European series of air temperature, relative humidity and precipitation P. Štěpánek (1), P. Zahradníček.
Chapter 16 Data Analysis: Testing for Associations.
Deutscher Wetterdienst Bootstrapping – using different methods to estimate statistical differences between model errors Ulrich Damrath COSMO GM Rome 2011.
Monthly Air Temperature Homogenization over France An example in department Vendée Anne – Marie WIECZOREK METEO – FRANCE.
Benchmark database inhomogeneous data, surrogate data and synthetic data Victor Venema.
Development and testing of homogenisation methods: Moving parameter experiments Peter Domonkos and Dimitrios Efthymiadis Centre for Climate Change University.
A novel methodology for identification of inhomogeneities in climate time series Andrés Farall 1, Jean-Phillipe Boulanger 1, Liliana Orellana 2 1 CLARIS.
RADIOSONDE TEMPERATURE BIAS ESTIMATION USING A VARIATIONAL APPROACH Marco Milan Vienna 19/04/2012.
Experience regarding detecting inhomogeneities in temperature time series using MASH Lita Lizuma, Valentina Protopopova and Agrita Briede 6TH Homogenization.
WCRP Extremes Workshop Sept 2010 Detecting human influence on extreme daily temperature at regional scales Photo: F. Zwiers (Long-tailed Jaeger)
ACTION COST-ES0601: Advances in homogenisation methods of climate series: an integrated approach (HOME), WG Meeting, Palma de Mallorca, January, 25-27,
Homogenization of Chinese daily surface air temperatures:An update for CHHT1.0 Li Qingxiang, Xu Wenhui, Xiaolan Wang, and coauthors (National Meteorological.
Developing long-term homogenized climate Data sets Olivier Mestre Météo-France Ecole Nationale de la Météorologie Université Paul Sabatier, Toulouse.
1 Detection of discontinuities using an approach based on regression models and application to benchmark temperature by Lucie Vincent Climate Research.
Data quality control for the ENSEMBLES grid Evelyn Zenklusen Michael Begert Christof Appenzeller Christian Häberli Mark Liniger Thomas Schlegel.
ENVIRONMENTAL AGENCY OF THE REPUBLIC OF SLOVENIA COST benchmark dataset homogenisation: issues and remarks of the “Slovenian team” Presentation.
Verification methods - towards a user oriented verification The verification group.
Climatological Extremes 13 November 2002 Albert Klein Tank KNMI, the Netherlands acknowledgements: 37 ECA-participants (Europe & Mediterranean)
Homogenization of daily data series for extreme climate index calculation Lakatos, M., Szentimey T. Bihari, Z., Szalai, S. Meeting of COST-ES0601 (HOME)
Benchmark database Victor Venema, Olivier Mestre, Enric Aguilar, Ingeborg Auer, José A. Guijarro, Petr Stepanek, Claude.N.Williams, Matthew Menne, Peter.
OVERHEATING RISK IN BUILDINGS: A CASE STUDY OF THE IMPACT OF ALTERNATIVE CONSTRUCTION SOLUTIONS AND OPERATIONAL REGIMES Andreas WURM , Ulrich PONT,
Extreme Hot Events Associated to Drought Occurrence
The homogenization of GPS Integrated Water Vapour time series: methodology and benchmarking the algorithms on synthetic datasets R. Van Malderen1, E. Pottiaux2,
Active layer and Permafrost monitoring programme in Northern Victoria Land.   Mauro Guglielmin (1) (1) Sciencies Faculty, Insubria University, Via J.H.Dunant.
The break signal in climate records: Random walk or random deviations
European Climate Assessment & Dataset
Sample Sizes for IE Power Calculations.
Presentation transcript:

Zentralanstalt für Meteorologie und Geodynamik 1. Comparison of HOM, SPLIDHOM and INTERP 2. Ideas for the daily benchmark dataset (temperature) Christine Gruber, Ingeborg Auer

Zentralanstalt für Meteorologie und Geodynamik Intercomparison experiments  Comparison of:  Della-Marta and Wanner, 2006 (HOM)  Mestre et al., ???? (SPLIDHOM)  Vincent et al., 2002; Brunetti et al., 2006 (INTERP)  I. Semi-synthetic data  Use of parallel measurements  Combination of series:  artificial but realistic breaks  the truth is known for evaluation of the methods  II. (Preliminary) Application of the methods to a test dataset (Lower Austria)  Uncertainty estimation using bootstrap temperature dependent adjustments

Zentralanstalt für Meteorologie und Geodynamik Semi-synthetic data  Parallel measurement breaks  Realistic inhomogeneities (relocation, screen change,..)  Not only temperature dependence included  Can be combined at given break point  known position In Austria not enough stations with long parallel measurements available…

Zentralanstalt für Meteorologie und Geodynamik Results for 5 Stations, TMIN/TMAX, 4 seasons=40 series Absolute differences of percentiles Homogenized-truth RAW-truth

Zentralanstalt für Meteorologie und Geodynamik Benefit of the homogenization HOM SPLIDHOM INTERP Q10Q50Q90 Q10Q50Q90Q10Q50Q90 TMIN TMAX

Zentralanstalt für Meteorologie und Geodynamik Conclusions  For evaluation parallel measurement data is used + realistic breaks -only 40 time series homogenized (*20 different samples) -Many time series too small inhomogeneities, less temperature dependence  HOM and SPLIDHOM  similar, main differences for extreme values  Improvement of HOM/SPLIDHOM compared to INTERP, in the case that:  Highly correlated reference stations available  Inhomogeneity is temperature dependent

Zentralanstalt für Meteorologie und Geodynamik Lower Austria- Experiment  Preliminary analysis of the Lower Austria temperatures  Mainly to see how the methods work for real data  Influence of reference stations, magnitude of the breaks,…  Testing a bootstrap approach for estimating uncertainties  Break detection with HOCLIS and PRODIGE (annual means)  Homogenization with SPLIDHOM (HOM)

Zentralanstalt für Meteorologie und Geodynamik Lower Austria- Experiment TMAXPRODIGEHOCLISMETA HOHhomogen Station relocation KRM , , , , Station relocation Change to automated station RET Station relocation Change to automated station SPO Station relocation 21  19 Uhr Station relocation Change to automated station WIE1951/ Station relocation 21  19 Uhr Change to automated station WMA (1989) Station relocation ZWE > 19 Uhr Station relocation Change to automated station

Zentralanstalt für Meteorologie und Geodynamik WIE summer, SPLIDHOM Ref=KRM Ref=HOH Ref=WMA Influence of undetected breakpoints (higher order moments) in REF? Too short HSPs for KRM, WMA! adjustment [°C] temperature [°C]

Zentralanstalt für Meteorologie und Geodynamik Adjustments Vienna Error growth!!!? HOM SPLIDHOM How many values are required that breaks can be adjusted reliably? Comparison of different methods useful Uncertainty of the adjustments seems to be reduced for earlier breaks Introduction of a “model”  easier to adjust in the following (earlier) breaks

Zentralanstalt für Meteorologie und Geodynamik WIE winter SPLIDHOM Ref=KRM Ref=HOH Ref=WMA

Zentralanstalt für Meteorologie und Geodynamik WIE (ref=HOH) Q10 Q90 Annual mean All data estimate Mean of bootstrap sample 0.9 confidence interval Original Uncertainties in extremes of the adjustments have hardly any influence (in this case)

Zentralanstalt für Meteorologie und Geodynamik WIE (ref=KRM) All data estimate Mean of bootstrap sample 0.9 confidence interval Original Q10 Q90 Annual mean

Zentralanstalt für Meteorologie und Geodynamik WIE (ref=WMA) All data estimate Mean of bootstrap sample 0.9 confidence interval Original Q10 Q90 Annual mean

Zentralanstalt für Meteorologie und Geodynamik Example for usefulness of uncertainty estimates Q10 No effect of the adjustments on the 0.1 percentile But information about the (minimum) uncertainty of the time series

Zentralanstalt für Meteorologie und Geodynamik Example for usefulness of uncertainty estimates Annual mean

Zentralanstalt für Meteorologie und Geodynamik Open questions  Requirements for reference stations?  correlation  length of HSPs  Detection of “higher order moment”- breaks?  Is it possible to adjust higher order moments?  Problems due to micro-scale climate changes (test-reference station distribution change)  Uncertainty assessment (especially for extreme values)  method uncertainty  sampling uncertainty  representativeness (references)

Zentralanstalt für Meteorologie und Geodynamik Benchmark daily data

Zentralanstalt für Meteorologie und Geodynamik The nature of the problem  Extreme value studies  homogenization of daily data necessary  Adjusting inhomogeneities in dependence of the weather type, physical reasons (primary effect)  Adjustments as function of wind, sunshine duration, global radiation… (difficult due to data availability)  Adjustment of the temperature dependence of the inhomogeneities (secondary effect)  Adjusting the temperature distribution (e.g. Della-Marta and Wanner, 2006)  Effect of inhomogeneities on temperature percentiles/extremes is reduced (that’s what we want in extreme value studies) In a first step: Shall we take into account only temperature dependent breaks in the daily benchmark?

Zentralanstalt für Meteorologie und Geodynamik Significance of temperature dependence How often significant temperature dependence occurs? Typical pattern and range of the magnitude  pattern for synthetic inhomogeneities

Zentralanstalt für Meteorologie und Geodynamik Possible working steps I.Case study Real dataset, metadata (availability?) Classification of inhomogeneities due to their source Examination of temperature dependence? (e.g. HOM) Other dependencies (wind, radiation,…) Typical pattern  benchmark II.Semi-synthetic (parallel measurement) series Realistic inhomogeneities, but truth is known for evaluation Dependencies to other elements could be studied (wind, radiation?) Data availability? (too few stations in Austria) III.Surrogate Based on typical inhomogeneity pattern (temperature dependent) (If other dependencies shall be treated as well  benchmark multiple series???? (  new adjustment-method multi-parameter???) Typical pattern? We must learn more about the problem