Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Object-Oriented Best Member Selection in a Regional Ensemble Forecasting System Christian.

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

1 A B C
Scenario: EOT/EOT-R/COT Resident admitted March 10th Admitted for PT and OT following knee replacement for patient with CHF, COPD, shortness of breath.
Simplifications of Context-Free Grammars
Angstrom Care 培苗社 Quadratic Equation II
AP STUDY SESSION 2.
1
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
STATISTICS Joint and Conditional Distributions
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Objectives: Generate and describe sequences. Vocabulary:
David Burdett May 11, 2004 Package Binding for WS CDL.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Local Customization Chapter 2. Local Customization 2-2 Objectives Customization Considerations Types of Data Elements Location for Locally Defined Data.
Process a Customer Chapter 2. Process a Customer 2-2 Objectives Understand what defines a Customer Learn how to check for an existing Customer Learn how.
Custom Statutory Programs Chapter 3. Customary Statutory Programs and Titles 3-2 Objectives Add Local Statutory Programs Create Customer Application For.
CALENDAR.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt RhymesMapsMathInsects.
1 How many layers of the Earth are there? The part of the Earth that consists of molten metal.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt FactorsFactors.
Institut für Physik der Atmosphäre Christian Keil Institut für Physik der Atmosphäre DLR Oberpfaffenhofen Germany Forecast Quality Control Applying an.
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
1. PHOTO INDEX Bayside: Page 5-7 Other Colour Leon: Page 8-10 Cabrera Page Canaria Page Driftwood Page 16 Florence Florence and Corfu Page.
Break Time Remaining 10:00.
This module: Telling the time
Turing Machines.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
PP Test Review Sections 6-1 to 6-6
Bright Futures Guidelines Priorities and Screening Tables
EIS Bridge Tool and Staging Tables September 1, 2009 Instructor: Way Poteat Slide: 1.
Bellwork Do the following problem on a ½ sheet of paper and turn in.
Operating Systems Operating Systems - Winter 2010 Chapter 3 – Input/Output Vrije Universiteit Amsterdam.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
TESOL International Convention Presentation- ESL Instruction: Developing Your Skills to Become a Master Conductor by Beth Clifton Crumpler by.
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1 Section 5.5 Dividing Polynomials Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1.
Sample Service Screenshots Enterprise Cloud Service 11.3.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Artificial Intelligence
Before Between After.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
Subtraction: Adding UP
: 3 00.
5 minutes.
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Prof.ir. Klaas H.J. Robers, 14 July Graduation: a process organised by YOU.
1 Let’s Recapitulate. 2 Regular Languages DFAs NFAs Regular Expressions Regular Grammars.
Speak Up for Safety Dr. Susan Strauss Harassment & Bullying Consultant November 9, 2012.
Essential Cell Biology
Converting a Fraction to %
Clock will move after 1 minute
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Copyright Tim Morris/St Stephen's School
1.step PMIT start + initial project data input Concept Concept.
1 Decidability continued…. 2 Theorem: For a recursively enumerable language it is undecidable to determine whether is finite Proof: We will reduce the.
Presentation transcript:

Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Object-Oriented Best Member Selection in a Regional Ensemble Forecasting System Christian Keil and George Craig Institut für Physik der Atmosphäre DLR Oberpfaffenhofen, Germany

Institut für Physik der Atmosphäre Regional Ensemble Prediction System COSMO-LEPS regional ensemble (ARPA SMR) 1.Identify ten clusters from ECMWF 51 member ensemble 2.Use a representative member from each cluster to drive a regional model (DWD Lokal Model) To make use of forecast ensemble, need to weight members  equally probable  use cluster populations, or  use most recent data (e.g. satellite imagery) But, for local severe weather, phase errors may dominate, so use a nonlinear pattern recognition algorithm

Institut für Physik der Atmosphäre Main components: 1.COSMO-LEPS: based on ECMWF EPS providing initial and boundary conditions and Lokal-Modell (LM Δx=7km ) 2.LMSynSat: forward operator to compute synthetic satellite imagery in LM 3.Objective Pattern Recognition Algorithm using Pyramidal Image Matching Regional Ensemble Prediction System

Institut für Physik der Atmosphäre Clustering of 1 EPSs fc range h ( ) using 4 discriminating variables at 3 pressure levels (u,v,Φ,q at 500/700/850 hPa): Clustering method -----> COMPLETE LINKAGE Selection mode > MINIMIZE INT/EXT RATIO Ensemble > 1 Initial Date > UTC Forecast range (hours) -> Area Limits (N/S/W/E) --> Number of clusters ----> 10 Explained Variance(%) -> 42.8 Cluster > Size > Internal variance(%) --> Radius > CL 1: ( 5) CL 2: ( 1) CL 3: ( 31) CL 4: ( 39) CL 5: ( 43) CL 6: ( 45) CL 7: ( 44) CL 8: ( 15) CL 9: ( 19) 19 CL 10: ( 23) 23 COSMO-LEPS case-study: 9 July 2002

Institut für Physik der Atmosphäre Generation of synthetic satellite images in LM: LMSynSat RTTOV-7 radiative transfer model (Saunders et al, 1999) Input: 3D fields: T,qv,qc,qi,qs,clc,ozone surface fields: T_g, T_2m, qv_2m, fr_land Output: cloudy/clear-sky brightness temperatures for Meteosat7 (IR and WV channels) and Meteosat8 (eight channels) (Keil et al, 2005)

Institut für Physik der Atmosphäre Lokal Modell: all 10 clusters Meteosat 7 IR 16:00 UTC Case Study with COSMO-LEPS: 9 July 2002

Institut für Physik der Atmosphäre Pyramidal Image Matching 1.Project observed and simulated images to same grid 2.Coarse-grain both images by pixel averaging, then compute displacement vector field that minimizes the total squared error in brightness temperature; search area +/- 2 pixel elements 3.Repeat step 2 at successively finer scales 4.Displacement vector for every pixel results from the sum over all scales

Institut für Physik der Atmosphäre Image Matching: BT< -20°C and coarse grain Meteosat 7 IR 1 Pixelelement = 8x8 LM GP

Institut für Physik der Atmosphäre Image Matching: BT< -20°C and coarse grain Model Cluster 7Observed

Institut für Physik der Atmosphäre Displacement Vectors Image Matching: BT< -20°C and coarse grain Model Cluster 7Observed

Institut für Physik der Atmosphäre Image Matching: successively finer scales

Institut für Physik der Atmosphäre Image Matching: successively finer scales

Institut für Physik der Atmosphäre Displacement vectors and matched image

Institut für Physik der Atmosphäre Rank corr. subjective new measure population Magnitude of displacement vectors consistent with subjective ranking Cluster population shows no correlation Ranking using different Quality Measures

Institut für Physik der Atmosphäre A new Quality Measure FQI = 0.33 * [ nordispl + (1-LM/Sat) + + (1-corr)] good bad

Institut für Physik der Atmosphäre normalized mean displacement vector Designing a Quality Measure (i)

Institut für Physik der Atmosphäre cloud amount (BT< -20°C) of Meteosat and LM Designing a Quality Measure (ii)

Institut für Physik der Atmosphäre spatial correlation after matching Designing a Quality Measure (iii)

Institut für Physik der Atmosphäre Rank Correlation with different lead times 1h 3h 6h 9h

Institut für Physik der Atmosphäre IR sequence for 9 July 2002 Meteosat 7 IR LM fc h

Institut für Physik der Atmosphäre Weighted displacement vs time wdis=fct(displ,LM_cloud,corr_matched) good bad FrontalConvectiveFrontal

Institut für Physik der Atmosphäre Conclusions 1.Pyramidal image matching provides a plausible measure of forecast error (consistent with subjective rankings) 2.COSMO-LEPS cluster populations are a poor indicator of local skill 3.Persistence of skill for about 12 hours owing to change of weather regime in region Future: adaptive forecasting system: stochastic physics, assimilation of MSG and radar data