Solubility of metal hydroxides, and amphoteric behavior. K so = [Fe 3+ ] [OH - ] 3 =10 -39 Fe(OH) 3 ( s ) precipitate pH = 6.4 [ Fe 3+ ] = 10 -16 M.

Slides:



Advertisements
Similar presentations
Reactions in Aqueous Solutions Chapter 7
Advertisements

Acids and Bases Chapters
Chapter 17 Additional Acid/ Base Equilibria Buffers Common Ion Effects
Applications of Aqueous Equilibrium
COMMON ION EFFECT.
Net ionic equations and solubility rules
Ionic Bonding Chapter 20.
Chapter 16 Precipitation Equilibria
Non-redox Reactions/ Double Replacement Reactions
TYPES OF CHEMICAL REACTIONS, CONTINUED. AB + CD AD + CB DOUBLE REPLACEMENT Ions in two compounds change partners Cation of one compound combines with.
Complex Ion Equilibria
CE 541 Complex Formation.
Strong Acids/ Bases Strong Acids more readily release H+ into water, they more fully dissociate H2SO4  2 H+ + SO42- Strong Bases more readily release.
Tests for cations in solution
Ways to measure Acidity/Basicity What is pH? What is pOH?
Ch.15: Acid-Base and pH Part 1.
IB topic 9 Oxidation-reduction
How is pH defined? The pH of a solution is the negative logarithm of the hydrogen-ion concentration. The pH may be represented mathematically, using the.
Acids & Bases How We Measure Acids and Bases pH Blue Base.
Chapter 17 Additional Aspects of Aqueous Equilibria
Precipitation Equilibria. Solubility Product Ionic compounds that we have learned are insoluble in water actually do dissolve a tiny amount. We can quantify.
Chapter 10: Acids and Bases When we mix aqueous solutions of ionic salts, we are not mixing single components, but rather a mixture of the ions in the.
Solubility Products Consider the equilibrium that exists in a saturated solution of BaSO 4 in water: BaSO 4 (s) Ba 2+ (aq) + SO 4 2− (aq)
SCH 3U1 1. Solubility of Ionic Compounds 2 All solutes will have some solubility in water. “Insoluble” substances simply have extremely low solubility.
Chapter 17 Additional Aspects of Aqueous Equilibria
Acid Base Equilibria Dr. Harris Ch 20 Suggested HW: Ch 20: 5, 9, 11*, 19*, 21, 29**, 35, 56** * Use rule of logs on slide 10 ** Use K a and K b tables.
Chemistry 123 – Dr. Woodward Qualitative Analysis of Metallic Elements Ag +, Pb 2+, Bi 3+ Cu 2+, Al 3+, Cr 3+ Ni 2+, Co 2+, Zn 2+ Sb 3+ /Sb 5+ Sn 2+ /Sn.
Solubility. Solubility “Insoluble” salts are governed by equilibrium reactions, and are really sparingly soluble. There is a dynamic equilibrium between.
Solubility. Solubility “Insoluble” salts are governed by equilibrium reactions, and are really sparingly soluble. There is a dynamic equilibrium between.
The K sp of chromium (III) iodate in water is 5.0 x Estimate the molar solubility of the compound. Cr(IO 3 ) 3 (s)  Cr 3+ (aq) + 3 IO 3 - (aq)
Ch. 16: Ionic Equilibria Buffer Solution An acid/base equilibrium system that is capable of maintaining a relatively constant pH even if a small amount.
© 2009, Prentice-Hall, Inc. Solubility of Salts (Ksp) Consider the equilibrium that exists in a saturated solution of BaSO 4 in water: BaSO 4 (s) Ba 2+
Aqueous Equilibria Chapter 15 Applications of Aqueous Equilibria.
GRAVIMETRIC METHODS OF ANALYSIS Gravimetric methods are quantitative methods based upon measuring the mass of a pure compound to which the analyte is chemically.
Aqueous Solutions. Soluble and Insoluble Soluble generally means that more than 1 g of solute will dissolve in 100 mL of water at room temperature. Insoluble.
LO 6.1 The student is able to, given a set of experimental observations regarding physical, chemical, biological, or environmental processes that are reversible,
1 Selective Precipitation  a solution containing several different cations can often be separated by addition of a reagent that will form an insoluble.
Solubility Allows us to flavor foods -- salt & sugar. Solubility of tooth enamel in acids. Allows use of toxic barium sulfate for intestinal x-rays.
What are acids and bases?
The hydrolysis of metal ions in aqueous solution..
Aqueous Equilibria © 2009, Prentice-Hall, Inc. Chapter 17 Additional Aspects of Aqueous Equilibria Chemistry, The Central Science, 11th edition Theodore.
Chapter 17 Additional Aspects of Aqueous Equilibria Subhash Goel South GA State College Douglas, GA © 2012 Pearson Education, Inc.
Chapter 14 Equilibria in Acid-Base Solutions. Buffers: Solutions of a weak conjugate acid-base pair. They are particularly resistant to pH changes, even.
Aqueous Equilibria Chapter 15 Additional Aspects of Aqueous Equilibria © 2009, Prentice-Hall, Inc.
Chapter 18 The Solubility Product Constant. Review Quiz Nuclear Chemistry Thermochemistry –Hess’s Law –Heats (Enthalpies) of…
Aqueous Equilibria Entry Task: Feb 17 th Wednesday Notes on Precipitate and ions HW: Precipitate and ions ws MAYHAN.
Aqueous Equilibria Chapter 17 Additional Aspects of Aqueous Equilibria.
Chapter 16 Precipitation equilibrium Solubility. l All dissolving is an equilibrium. l If there is not much solid it will all dissolve. l As more solid.
Topic 14: Solubility AP Chemistry Mrs. Laura Peck, 2013
1 Titration Curve of a Weak Base with a Strong Acid.
Aqueous Equilibria Chapter 15 Applications of Aqueous Equilibria.
 Determine the type of reaction and predict the products: NaOH  Li + Br 2  C 2 H 4 + O 2 
To calculate the new pH, use the Henderson- Hasselbalch equation: 1141.
Common Ion Effect CH 3 COOH H + (aq) + CH 3 COO  (aq) pH of 0.1 M soln = Add 0.1 M CH 3 COONa: CH 3 COONa  Na + + CH 3 COO  (aq) pH = What happened.
Aqueous Equilibria By: Chris Via. Common-Ion Effect C.I.E.- the dissociation of a weak electrolyte by adding to the solution a strong electrolyte that.
Chapter 17 Additional Aspects of Aqueous Equilibria John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation © 2012 Pearson.
According to the Arrhenius concept, a base is a substance that produce OH - ions in aqueous solution. According to the Brønsted-Lowry model, a base is.
Ag+(aq) + 2 H2O(l)  Ag(H2O)2+(aq)
1) C + H 2 → C 3 H 8 2) C 6 H 12 + O 2 → H 2 O + CO 2 3) NaI + Pb(SO 4 ) 2 → PbI 4 + Na 2 SO 4 4) HgI 2 + O 2 → HgO + I 2 5)List the 7 diatomic molecules.
E 12 Water and Soil Solve problems relating to removal of heavy –metal ions and phosphates by chemical precipitation
Solubility Constant (Ksp). © 2009, Prentice-Hall, Inc. Solubility of Salts (Ksp) Consider the equilibrium that exists in a saturated solution of BaSO.
Sec. 7.1 & 9.1: Formation and Naming of Ions Valence Electrons The electrons responsible for the chemical properties of atoms, and are those in the outer.
Will it all dissolve, and if not, how much?. Looking at dissolving of a salt as an equilibrium. If there is not much solid it will all dissolve. As more.
17.4: Solubility Equilibria
Study these practice questions for your exam!!
Aqueous Chemistry.
Presentation transcript:

Solubility of metal hydroxides, and amphoteric behavior. K so = [Fe 3+ ] [OH - ] 3 = Fe(OH) 3 ( s ) precipitate pH = 6.4 [ Fe 3+ ] = M

Solubilities of metal hydroxides. If one leaves an orange solution of a ferric salt to stand, after a while it will clear, and an orange precipitate of Fe(OH) 3 ( s ) will form. The extent to which Fe 3+ can exist in solution as a function of pH can be calculated from the solubility product, K so. For Fe(OH) 3 ( s ) the expression for K so is given by: K so =[Fe 3+ ] [OH - ] 3 = [2] One thus finds that the maximum concentration of Fe 3+ in solution is controlled by pH, as detailed on the next slide. maximum Fe 3+ conc at [OH - ] indicated

Note that we need [OH - ] in expression 2, which is obtained from the pH from equation 3. pK w =pH+ pOH= 14[3] Thus, if the pH is 2, then pOH = 12, and so on. pOH is related to [OH - ] in the same way as pH is related to [H + ]. pH=-log [H + ][4] pOH=-log [OH - ][5] So, to calculate the maximum concentration of [ Fe 3+ ] at pH 6.4, we use eqs. [3] to [5] to calculate that at pH 6.4, pOH = 7.6, so that [OH - ] = M. This is then used in equation [2] to calculate that [Fe 3+ ] is given by:

Problem. What is the maximum [Fe 3+ ] at pH 6.4? From the previous page, at pH 6.4 we have [OH - ] = M. Thus, putting [OH - ] = M into equation 2, we get: = [ Fe 3+ ] x [ ] 3 [ Fe 3+ ] = / = M Note that for a metal ion M n+ of valence n that forms a solid hydroxide precipitate M(OH) n, the equation has the [OH - ] raised to the power n. For example: Pb 2+ forms Pb(OH) 2 ( s ): K so = = [Pb 2+ ] [OH - ] 2 Th 4+ forms Th(OH) 4 ( s ): K so = = [Th 4+ ] [OH - ] 4 = 3 x -7.6

Problem: What is the maximum concentration of [Th 4+ ] in aqueous solution at pH 4.2? (log K so = -50.7) At pH 4.2 pOH = 14 – 4.2 = 9.8. Thus, [OH - ] = M, so we have: =[Th 4+ ] [ ] =[Th 4+ ] x [Th 4+ ]= / = M = – (- 39.2)

Factors that control the solubility of metal hydroxides. It is found that K so is, like pK a for aqua ions, a function of metal ion size, charge, and electronegativity. Thus, Fe 3+ is a small ion of fairly high charge, and not-too-low electronegativity, and so forms a hydroxide of low solubility. Thus, the hydroxide of Na +, which is NaOH, is highly soluble in water, while at the other extreme, Pu(OH) 4 (s) is of very low solubility (K so = ). The latter fact is fortunate, because the highly radioactive Pu(IV) is not readily transported in water, since it exists as a precipitated hydroxide. Examples of the effect of charge on solubility of hydroxides are: Ag + Cd 2+ La 3+ Th 4+ log K so :

Metal oxides and hydroxides. Metal oxides can be regarded simply as dehydrated hydroxides. Metal hydroxides can usually be heated to give the oxides, although sometimes very high temperatures are required: 2 Al(OH) 3 (s)=Al 2 O 3 (s) +3 H 2 O(g) [6] The formation of ceramics involves such firing of hydrated metal salts in a kiln, with waters of hydration being driven off. The oxides tend to be less soluble than the freshly precipitated hydroxides, and on standing many hydroxides lose water, and ‘age’. Thus, aged precipitates of hydroxides can be much less soluble than freshly precipitated hydroxides. Fresh ‘CaO’ is quite water soluble, but old samples can be highly insoluble.

Amphoteric behavior. When one looks at the periodic table, one finds that at the very left, metal oxides are basic. That means that if they are dissolved in water, they give basic solutions: Na 2 O ( s ) + H 2 O ( l ) = 2 Na + ( aq ) + 2 OH - ( aq ) [7] On the right hand side, metal oxides dissolve to give acidic solutions, as with sulfur trioxide: SO 3 ( s ) + H 2 O ( l ) = 2 H + ( aq ) + SO 4 2- ( aq )[8] There is a transitional area where the metals can display both basic and acidic behavior. This is called amphoteric behavior.

Amphoteric behavior of Al(III) in aqueous solution: Al(III) can display both acidic properties and basic properties: Acidic: Al 2 O 3 ( s ) + 2 OH - ( aq )  2 [Al(OH) 4 ] - ( aq ) [9] Basic: Al 2 O 3 ( s ) + 6 H + ( aq )  2 [Al(OH 2 ) 6 ] 3+ ( aq ) [10] At high pH Al 2 O 3 is acidic, while at low pH it is basic. The range of existence of the species [Al(H 2 O) 6 ] 3+, [Al(H 2 O) 5 (OH)] 2+, and [Al(OH) 4 ] - is shown in the species distribution diagram below: tetrahydroxy aluminate anion hexaaqua aluminum(III) cation

Species distribution diagram for Al(III) in aqueous solution: cross-hatched pH range = range where Al(OH) 3 ( s ) precipitate forms (pH ~ 4 to pH~9) Al(OH) 3 (s) soluble insoluble Al 3+

Amphoteric metal ions in the periodic table: Metal ions that are amphoteric in the periodic table are highlighted in red below: Be(II)B(III) CN OF Mg(II)Al(III) SiP SCl Zn(II)Ga(III) GeAs SeBr Cd(II)In(III) Sn (II)Sb TeI Hg(II)Tl(III) Pb(II)Bi(III) Po The species formed at high pH are, for example, the tetrahedral ions [Be(OH) 4 ] 2-, [Zn(OH) 4 ] 2-, [Al(OH) 4 ] -, [Ga(OH) 4 ] -, and [In(OH) 4 ] -. Zone of amphoteric metal ions