Systematic study of fusion reactions leading to super-heavy nuclei Ning Wang ( ) Guangxi Normal University www.ImQMD.com/wangning/ Workshop on Synthesis.

Slides:



Advertisements
Similar presentations
I0 I Probability Neutron Attenuation (revisited) X Recall t = N t
Advertisements

Neutron-induced Reactions
? Nuclear Reactions Categorization of Nuclear Reactions
Accelerator Physics, JU, First Semester, (Saed Dababneh).
Neutron Excess Asymmetry Remember HWc 1.
Nuclear Binding Energy
Constraining nuclear symmetry energy from high-energy heavy-ion collisions Zhao-Qing Feng ( ) Institute of Modern Physics, Lanzhou, Chinese Academy of.
Nuclear mass predictions for super-heavy nuclei and drip-line nuclei
Systematics of fusion probability in reactions leading to super-heavy nuclei Ning Wang ( ) Guangxi Normal University Dec., Beijing.
Systematic study of fusion reactions leading to super-heavy nuclei
70 YEARS OF FISSION Kazimierz 2008 Comment on a frequent error in calculations of the n / f ratio W.J. Świątecki, J. Wilczyński and K. S-W.
Modern Theory of Nuclear Structure, Exotic Excitations and Neutrino-Nucleus Reactions N. Paar Physics Department Faculty of Science University of Zagreb.
3/2003 Rev 1 I.2.9 – slide 1 of 35 Session I.2.9 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
SYNTHESIS OF SUPER HEAVY ELEMENTS
Influence of the neutron-pair transfer on fusion V. V. Sargsyan*, G. G. Adamian, N. V. Antonenko In collaboration with W. Scheid, H. Q. Zhang, D. Lacroix,
The peculiarities of the production and decay of superheavy nuclei M.G.Itkis Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia.
The Dynamical Deformation in Heavy Ion Collisions Junqing Li Institute of Modern Physics, CAS School of Nuclear Science and Technology, Lanzhou University.
Kazimierz What is the best way to synthesize the element Z=120 ? K. Siwek-Wilczyńska, J. Wilczyński, T. Cap.
沈彩万 湖州师范学院 8 月 11 日 ▪ 兰州大学 准裂变与融合过程的两步模型描述 合作者: Y. Abe, D. Boilley, 沈军杰.
Fusion-Fission Dynamics for Super-Heavy Elements Bülent Yılmaz 1,2 and David Boilley 1,3 Fission of Atomic Nuclei Super-Heavy Elements (SHE) Measurement.
1 Role of the nuclear shell structure and orientation angles of deformed reactants in complete fusion Joint Institute for Nuclear Research Flerov Laboratory.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Reactions Categorization of Nuclear Reactions According to: bombarding.
Role of mass asymmetry in fusion of super-heavy nuclei
Production of elements near the N = 126 shell in hot fusion- evaporation reactions with 48 Ca, 50 Ti, and 54 Cr projectiles on lanthanide targets Dmitriy.
Heavy Element Research at Dubna (current status and future trends) Yuri Oganessian Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research.
Aim  to compare our model predictions with the measured (Dubna and GSI) evaporation cross sections for the 48 Ca Pb reactions. Calculations.
Ning Wang 1, Min Liu 1, Xi-Zhen Wu 2, Jie Meng 3 Isospin effects in nuclear mass models Nuclear Structure and Related Topics (NSRT15), , DUBNA.
Opportunities for synthesis of new superheavy nuclei (What really can be done within the next few years) State of the art Outline of the model (4 slides.
Shanghai Elliptic flow in intermediate energy HIC and n-n effective interaction and in-medium cross sections Zhuxia Li China Institute of Atomic.
Ning Wang 1, Min Liu 1, Xi-Zhen Wu 2, Jie Meng 3 Isospin effect in Weizsaecker-Skyrme mass formula ISPUN14, , Ho Chi Minh City 1 Guangxi Normal.
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
Nuclear deformation in deep inelastic collisions of U + U.
II. Fusion and quasifission with the dinuclear system model Second lecture.
1 Reaction Mechanisms with low energy RIBs: limits and perspectives Alessia Di Pietro INFN-Laboratori Nazionali del Sud.
Isotope dependence of the superheavy nucleus formation cross section LIU Zu-hua( 刘祖华) (China Institute of Atomic Energy)
BNU The study of dynamical effects of isospin on reactions of p Sn Li Ou and Zhuxia Li (China Institute of Atomic Energy, Beijing )
Breakup effects of weakly bound nuclei on the fusion reactions C.J. Lin, H.Q. Zhang, F. Yang, Z.H. Liu, X.K. Wu, P. Zhou, C.L. Zhang, G.L. Zhang, G.P.
10-1 Fission General Overview of Fission The Probability of Fission §The Liquid Drop Model §Shell Corrections §Spontaneous Fission §Spontaneously Fissioning.
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
Quasifission reactions in heavy ion collisions at low energies A.K. Nasirov 1, 2 1 Joint Institute for Nuclear Research, Dubna, Russia 2 Institute.
Ning Wang An improved nuclear mass formula Guangxi Normal University, Guilin, China KITPC , Beijing.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
Study on Sub-barrier Fusion Reactions and Synthesis of Superheavy Elements Based on Transport Theory Zhao-Qing Feng Institute of Modern Physics, CAS.
1 Synthesis of superheavy elements with Z = in hot fusion reactions Wang Nan College of Physics, SZU Collaborators: S G Zhou, J Q Li, E G Zhao,
Fusion of light halo nuclei
C. M. Folden III Cyclotron Institute, Texas A&M University NN2012, San Antonio, Texas May 31, 2012.
北京航空航天大学核物理实验研究介绍 北京航空航天大学 核科学与技术系 2012 年 7 月. 报告内容  北京航空航天大学核物理实验组简介  在 RIBLL1 上的一些实验设想.
Observation of new neutron-deficient multinucleon transfer reactions
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
Studies of Heavy Ion Reactions around Coulomb Barrier Part I. Competition between fusion-fission and quasi- fission in 32 S+ 184 W reaction Part II. Sub-barrier.
Dynamical Model of Surrogate Reaction Y. Aritomo, S. Chiba, and K. Nishio Japan Atomic Energy Agency, Tokai, Japan 1. Introduction Surrogate reactions.
1 Z.Q. Feng( 冯兆庆 ) 1 G.M. Jin( 靳根明 ) 2 F.S. Zhang ( 张丰收 ) 1 Institute of Modern Physics, CAS 2 Institute of Low Energy Nuclear Physics Beijing NormalUniversity.
Production mechanism of neutron-rich nuclei in 238 U+ 238 U at near-barrier energy Kai Zhao (China Institute of Atomic Energy) Collaborators: Zhuxia Li,
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Lecture 3 1.The potential energy surface of dinuclear system and formation of mass distribution of reaction products. 2.Partial cross sections. 3. Angular.
Oct. 16 th, 2015, Yonsei. RAON 2 Far from Stability Line 3.
Fusion of 16,18O + 58Ni at energies near the Coulomb barrier
Extracting β4 from sub-barrier backward quasielastic scattering
China-Japan collaboration workshop,
采用热熔合方法合成超重核的理论研究 王楠 深圳大学 合作者: 赵恩广 (中科院 理论物理所) 周善贵 (中科院 理论物理所)
Nuclear masses of neutron-rich nuclei and symmetry energy
Weizsaecker-Skyrme mass model and the statistical errors
The role of fission in the r-process nucleosynthesis
Symmetry energy coefficients and shell gaps from nuclear masses
Breakup of weakly bound nuclei and its influence on fusion
An improved nuclear mass formula
Coupled-channel study of fine structure in the alpha decay of well-deformed nuclei Zhongzhou REN (任中洲) Department of Physics, Nanjing University, Nanjing,
V.V. Sargsyan, G.G. Adamian, N.V.Antonenko
Catalin Borcea IFIN-HH INPC 2019, Glasgow, United Kingdom
Presentation transcript:

Systematic study of fusion reactions leading to super-heavy nuclei Ning Wang ( ) Guangxi Normal University Workshop on Synthesis of Super-heavy nuclei, August 10-13, 2012, Lanzhou 1. Introduction 2. Capture cross section 3. Survival probablity W sur 4. Fusion probabilty P CN 5. Summary

1) to study the three parts individually; 2) to estimate the model uncertainty

I. Capture II. Decay III. Formation # Coulomb Barrier (Skyrme EDF) # Barrier Distribution # Deformation & Dynamics … (ImQMD) # Fission Barrier # Masses & Shell corrections (mass formula) # Fission Fragment Yields … (DNS) # Quasi-Fission Barrier # Potential Energy Surface # Dynamics …

I. Capture cross sections with the Skyrme energy-density functional Density distributions of the reaction partners Entrance-channel Coulomb barrier Capture cross sections Skyrme energy-density functional Barrier penetration & empirical fusion barrier distribution D(B) M. Liu, N. Wang, Z. Li, X. Wu and E. Zhao, Nucl. Phys. A 768 (2006) 80 Ning Wang, et al., Phys. Rev. C 74 (2006)

Woods-Saxon form for densities Search for the minimum of energy by varying densities (R 0p, R 0n, a p, a n ) according to Hohenberg-Kohn theorem 1. Determination of density distributions

E1E1 E2E2 Sudden approximation for density R V.Yu. Denisov and W. Noerenberg, Eur. Phys. J. A15, 375 (2002). 2. Entrance-channel inter-nucleus potential

3. Fusion (capture) cross section with D(B) considers the coupling between the relative motion and other degrees of freedom such as dyn. deform. etc. 16 O+ 208 Pb, E=80MeV, ImQMD

for reactions with nuclei near the beta-stability line but the neutron-shell is not closed

The fusion excitation functions for a series of reactions with 16 O bombarding on medium mass targets. Wang et al. Sci China G 52, 1554 (2009) suppression enhancement

Deviations from exp. data for 120 reactions For about 70% systems, the deviations are smaller than 0.005, estimated systematic error 18%. N. Wang et al., J. Phys. G: 34 (2007) 1935 rms deviation for (E>B 0 )

II. Survival probability W sur with HIVAP The sensitive parameters: 1. fission barriers (Liquid-drop barriers, Sierks barriers…) 2. level density parameters (Fermi gas model, angular-momentum and shape-dependent) 3. masses shell corrections and particle separation energies In the standard HIVAP code: r a =1.153fm

Wang, Zhao, Scheid, Wu, PRC 77 (2008) Fusion-fission EDF HIVAP

For 68% reactions, the deviations are smaller than , Estimated systematic errors of the HIVAP code: 1.85W sur and W sur /1.85 Deviations of calculated evaporation (and fission) cross sections from exp. data for 51 fusion-fission reactions

A reliable nuclear mass formula is crucial for a description of the properties and production cross sections of super-heavy nuclei WS : PRC 81 (2010) WS*: PRC 82 (2010) WS3: PRC 84 (2011) ). Masses of super-heavy nuclei An improved nuclear mass formula WS* 152

Alpha-decay energies of super-heavy nuclei have been predicted rms ~ 248 keV to 46 Q a of SHN

H.F. Zhang, et al., Phys. Rev. C 85, (2012) N=178 WS* N=178 WS* N=162N=178 WS*

B0B0 BfBf B qf III. Fusion probability E* also influences the results

1) quasi-fission barrier Wang, Tian, Scheid, PRC84, (R) (2011) Yu. Oganessian Wang, et al, PRC77, (2008)

Fusion probability

2) Evaporation residual cross sections Mean barrier height PRC84, (R) (2011)

Uncertainty at E>B m : 1.18 (capture) x 1.85 (W sur ) x 2 (P CN ) = 4.4

Opt. 50 Ti+ 249 Bk 50 Ti+ 249 Cf 54 Cr+ 248 Cm 58 Fe+ 244 Pu Zagrebaev PRC(2008) ~ 50 fb ~ 40 fb ~ 20 fb~ 5 fb Liu-Bao PRC(2011) ~ 600 fb ~ 100 fb Nasirov PRC(2011) ~ 100 fb~ 70 fb Ning Wang PRC(2011) ~ 35 fb ~ 20 fb ~ 5 fb~ 3 fb Nan Wang PRC(2012) ~ 110 fb ~ 50 fb ~ 6 fb~ 4 fb Siwek- Wilczynska PRC(2012) ~ 30 fb ~ 6 fb ~ 1 fb~ 0.1 fb exp. (GSI) < 70 fb < 200 fb (from talk of D. Ackermann)

Summary Models for calculations of capture cross sections, survival probability of compound nucleus and the fusion probability in fusion reactions leading to SHN have been tested step by step. Coulomb barrier, fission barrier and quasi-fission barrier play important roles for the calculations of three parts. More precise calculations for masses, fission barriers, fission fragment yields and the study of fusion dynamics are still required.

China Institute of Atomic energy Zhu-Xia Li Xi-Zhen Wu Kai Zhao Institute of Theoretical Physics (CAS) En-Guang Zhao Justus-Liebig-Univ. Giessen Werner Scheid Guangxi Normal Univ. Min Liu Anyang Normal Univ. Jun-Long Tian

Fission fragment yields with driving potential DNS: En-Guang Zhao Shan-Gui Zhou Jun-Qing Li Nan Wang Nuclear engineering Nuclear structure Fission cycle in nuclear astrophysics

Thanks for your attention Some codes and data are available at

KineticNuclearCoulomb Skyrme energy-density functional M. Brack, C. Guet, H.-B. Hakanson, Phys. Rep. 123, 275 (1985). Skyrme force SkM*

1). Fission barrier Nuclei Cohen-Swiatecki Sierk Dahlinger MWS 244 Pu No

2). Level density parameters In the standard HIVAP code: E d =18.5MeV, r a =1.153fm

Large-angle quasi-elastic scattering PRC78, (2008) Tail of the barrier distribution influences the large-angle quasi-elastic cross sections

S. G. Zhou Tail of barrier distribution influences the large-angle quasi-elastic cross sections