The Law of Cosines.

Slides:



Advertisements
Similar presentations
RATIONAL FUNCTIONS A rational function is a function of the form:
Advertisements

Equations in Quadratic Form
Trigonometric Equations I
SINE AND COSINE FUNCTIONS
The Law of Sines.
Symmetric about the y axis
SIMPLE AND COMPOUND INTEREST
Integration by Parts.
Relations And Functions. A relation is a set of ordered pairs. {(2,3), (-1,5), (4,-2), (9,9), (0,-6)} This is a relation The domain is the set of all.
2.4: Odd and Even Functions So for an even function, for every point (x, y) on the graph, the.
Mathematical Models Constructing Functions And Optimisation.
Matrices are identified by their size.
If A and B are both m × n matrices then the sum of A and B, denoted A + B, is a matrix obtained by adding corresponding elements of A and B. add these.
Solving Quadratic Equations.
Parallel and Perpendicular Lines. Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use.
TRIGONOMETRY FUNCTIONS
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. If the.
R I A N G L E. hypotenuse leg In a right triangle, the shorter sides are called legs and the longest side (which is the one opposite the right angle)
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
SPECIAL USING TRIANGLES Computing the Values of Trig Functions of Acute Angles.
TRIGONOMETRIC IDENTITIES
You walk directly east from your house one block. How far from your house are you? 1 block You walk directly west from your house one block. How far from.
The definition of the product of two vectors is: 1 This is called the dot product. Notice the answer is just a number NOT a vector.
Dividing Polynomials.
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.
When trying to figure out the graphs of polar equations we can convert them to rectangular equations particularly if we recognize the graph in rectangular.
Work out problems on board Add visuals (ranges of arccos and arcsin) to show why you use LOC for big angles and LOS for small angles.
Properties of Logarithms
Ambiguous Case Triangles
The Complex Plane; DeMoivre's Theorem. Real Axis Imaginary Axis Remember a complex number has a real part and an imaginary part. These are used to plot.
VECTORS.
11.3 Powers of Complex Numbers, DeMoivre's Theorem Objective To use De Moivre’s theorem to find powers of complex numbers.
COMPLEX Z R O S. Complex zeros or roots of a polynomial could result from one of two types of factors: Type 1 Type 2 Notice that with either type, the.
6.2 The Law of Cosines.
Sum and Difference Formulas. Often you will have the cosine of the sum or difference of two angles. We are going to use formulas for this to express in.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
COMPOSITION OF FUNCTIONS “SUBSTITUTING ONE FUNCTION INTO ANOTHER”
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
The Law of Cosines. Let's consider types of triangles with the three pieces of information shown below. SAS You may have a side, an angle, and then another.
The Law of Cosines. Let's consider types of triangles with the three pieces of information shown below. SAS You may have a side, an angle, and then another.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
Law of Cosines. Let's consider types of triangles with the three pieces of information shown below. SAS You may have a side, an angle, and then another.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Solving Trigonometric Equations Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 x y π π 6 -7 π 6 π 6.
PARAMETRIC Q U A T I 0 N S. The variable t (the parameter) often represents time. We can picture this like a particle moving along and we know its x position.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Law of Cosines HOMEWORK: Lesson 12.4/ Who's Law Is It, Anyway?  Murphy's Law: Anything that can possibly go wrong, will go wrong (at the worst.
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
TRIGONOMETRIC IDENTITIES
10-7 (r, ).
Systems of Inequalities.
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
6.2 The Law of Cosines.
THE DOT PRODUCT.
Ambiguous Case Triangles
The Law of Cosines.
The Law of Cosines.
(r, ).
THE UNIT CIRCLE.
THE UNIT CIRCLE.
The Law of Cosines.
THE UNIT CIRCLE.
Solving Quadratic Equations.
The Law of Cosines.
Ambiguous Case Triangles
The Complex Plane; DeMoivre's Theorem
Presentation transcript:

The Law of Cosines

Let's consider types of triangles with the three pieces of information shown below. We can't use the Law of Sines on these because we don't have an angle and a side opposite it. We need another method for SAS and SSS triangles. SAS AAA You may have a side, an angle, and then another side You may have all three angles. AAA This case doesn't determine a triangle because similar triangles have the same angles and shape but "blown up" or "shrunk down" SSS You may have all three sides

a c  b What is the coordinate here? Let's place a triangle on the rectangular coordinate system. (a cos , a sin ) (x, y) What is the coordinate here? Drop down a perpendicular line from this vertex and use right triangle trig to find it. a c y  x b (b, 0) Now we'll use the distance formula to find c (use the 2 points shown on graph) square both sides and FOIL This = 1 factor out a2 This is the Law of Cosines rearrange terms

LAW OF COSINES LAW OF COSINES We could do the same thing if gamma was obtuse and we could repeat this process for each of the other sides. We end up with the following: LAW OF COSINES Use these to find missing sides LAW OF COSINES Use these to find missing angles

Since the Law of Cosines is more involved than the Law of Sines, when you see a triangle to solve you first look to see if you have an angle (or can find one) and a side opposite it. You can do this for ASA, AAS and SSA. In these cases you'd solve using the Law of Sines. However, if the 3 pieces of info you know don't include an angle and side opposite it, you must use the Law of Cosines. These would be for SAS and SSS (remember you can't solve for AAA). Since the Law of Cosines is more involved than the Law of Sines, when you see a triangle to solve you first look to see if you have an angle (or can find one) and a side opposite it. You can do this for ASA, AAS and SSA. In these cases you'd solve using the Law of Sines. However, if the 3 pieces of info you know don't include an angle and side opposite it, you must use the Law of Cosines. These would be for SAS and SSS (remember you can't solve for AAA).

a = 2.99 Solve a triangle where b = 1, c = 3 and  = 80° This is SAS  Draw a picture. This is SAS  3 a Do we know an angle and side opposite it? No so we must use Law of Cosines. 80  1 Hint: we will be solving for the side opposite the angle we know. minus 2 times the product of those other sides times the cosine of the angle between those sides One side squared sum of each of the other sides squared Now punch buttons on your calculator to find a. It will be square root of right hand side. a = 2.99 CAUTION: Don't forget order of operations: powers then multiplication BEFORE addition and subtraction

We'll label side a with the value we found. We now have all of the sides but how can we find an angle?  3 19.2 2.99 80 80.8  Hint: We have an angle and a side opposite it. 1  is easy to find since the sum of the angles is a triangle is 180° NOTE: These answers are correct to 2 decimal places for sides and 1 for angles. They may differ with book slightly due to rounding. Keep the answer for  in your calculator and use that for better accuracy.

Solve a triangle where a = 5, b = 8 and c = 9 Draw a picture. This is SSS 9  5 Do we know an angle and side opposite it? No, so we must use Law of Cosines.  84.3  8 Let's use largest side to find largest angle first. minus 2 times the product of those other sides times the cosine of the angle between those sides One side squared sum of each of the other sides squared CAUTION: Don't forget order of operations: powers then multiplication BEFORE addition and subtraction

How can we find one of the remaining angles? Do we know an angle and side opposite it?  9 62.2 5  84.3  33.5 8 Yes, so use Law of Sines.

Acknowledgement I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. www.slcc.edu Shawna has kindly given permission for this resource to be downloaded from www.mathxtc.com and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar www.ststephens.wa.edu.au