CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU T cell Epitope predictions using bioinformatics (Neural Networks and hidden.

Slides:



Advertisements
Similar presentations
Sequence motifs, information content, logos, and HMM’s
Advertisements

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Neural Network training Morten Nielsen, CBS, BioCentrum, DTU.
Artificial Neural Networks 1 Morten Nielsen Department of Systems Biology, DTU.
Artificial Neural Networks 1 Morten Nielsen Department of Systems Biology, DTU IIB-INTECH, UNSAM, Argentina.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU T cell Epitope predictions using bioinformatics (Hidden Markov models) Morten.
Immune system overview in 10 minutes The non-immunologist guide to the immune system Morten Nielsen Department of Systems Biology DTU.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Project in Immunological Bioinformatics Morten Nielsen, CBS, BioCentrum, DTU.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Sequence motifs, information content, logos, and HMM’s Morten Nielsen, CBS,
Immune system overview in 10 minutes The non-immunologist guide to the immune system.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Sequence information, logos and Hidden Markov Models Morten Nielsen, CBS, BioCentrum,
Gibbs sampling Morten Nielsen, CBS, BioSys, DTU. Class II MHC binding MHC class II binds peptides in the class II antigen presentation pathway Binds peptides.
Sequence motifs, information content, logos, and Weight matrices
Prediction of T cell epitopes using artificial neural networks
MHC binding and MHC polymorphism Or Finding the needle in the haystack.
MHC binding and MHC polymorphism. MHC-I molecules present peptides on the surface of most cells.
Morten Nielsen, CBS, BioCentrum, DTU
Sequence motifs, information content, logos, and HMM’s Morten Nielsen, CBS, BioCentrum, DTU.
Immunological Bioinformatics Or Finding the needle in the haystack Morten Nielsen
CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU T cell Epitope predictions using bioinformatics (Neural Networks and hidden.
Predicting peptide MHC interactions Morten Nielsen, CBS, Depart of Systems Biology, DTU.
Sequence motifs, information content, and sequence logos Morten Nielsen, CBS, Depart of Systems Biology, DTU.
Hidden Markov Models, HMM’s Morten Nielsen, CBS, Department of Systems Biology, DTU.
Optimization methods Morten Nielsen Department of Systems Biology, DTU.
Sequence motifs, information content, logos, and Weight matrices Morten Nielsen, CBS, BioCentrum, DTU.
Class I pathway Prediction of proteasomal cleavage and TAP binding.
Characterizing receptor ligand interactions Morten Nielsen, CBS, Depart of Systems Biology, DTU.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Department of Systems Biology Technical University of Denmark Immunological Bioinformatics Processing, combined.
Biological sequence analysis and information processing by artificial neural networks Morten Nielsen CBS.
Artificial Neural Networks 1 Morten Nielsen Department of Systems Biology, DTU.
Performance measures Morten Nielsen, CBS, BioCentrum, DTU.
Sequence motifs, information content, logos, and HMM’s Morten Nielsen, CBS, BioCentrum, DTU.
Class I pathway Prediction of proteasomal cleavage and TAP binidng Morten Nielsen, CBS, BioCentrum, DTU.
Class I pathway Prediction of proteasomal cleavage and TAP binidng Can Keşmir, TBB, Utrecht University, NL & CBS, BioCentrum, DTU.
Immunological Bioinformatics Introduction to the immune system.
Immunological Bioinformatics. The Immunological Bioinformatics group Immunological Bioinformatics group, CBS, Technical University of Denmark (
Selection of T Cell Epitopes Using an Integrative Approach Mette Voldby Larsen cand. scient. in biology ph.d. student.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Sequence motifs, information content, logos, and HMM’s Morten Nielsen, CBS,
CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Sequence motifs, information content, logos, and HMM’s Morten Nielsen, CBS,
Sequence motifs, information content, logos, and HMM’s Morten Nielsen, CBS, BioSys, DTU.
Psi-Blast Morten Nielsen, CBS, Department of Systems Biology, DTU.
Sequence motifs, information content, logos, and HMM’s Morten Nielsen, CBS, BioCentrum, DTU.
Hidden Markov Models, HMM’s Morten Nielsen, CBS, BioSys, DTU.
Sequence motifs, information content, logos, and HMM’s Morten Nielsen, CBS, BioSys, DTU.
Blast heuristics Morten Nielsen Department of Systems Biology, DTU.
Prediction of CTL responses Mette Voldby Larsen cand. scient. in biology ph.d. student.
What is bioinformatics?. What are bioinformaticians up to, actually? Manage molecular biological data –Store in databases, organise, formalise, describe...
Selection of T Cell Epitopes Using an Integrative Approach Mette Voldby Larsen cand. scient. in Biology PhD in Immunological Bioinformatics.
Sequence encoding, Cross Validation Morten Nielsen BioSys, DTU
Hidden Markov Models, HMM’s Morten Nielsen, CBS, BioSys, DTU.
What is a Project Purpose –Use a method introduced in the course to describe some biological problem How –Construct a data set describing the problem –Define.
Predicting peptide MHC interactions Morten Nielsen, CBS, Department of Systems Biology, DTU.
Artificial Neural Networks 1 Morten Nielsen Department of Systems Biology, DTU.
Dealing with Sequence redundancy Morten Nielsen Department of Systems Biology, DTU.
Hidden Markov Models, HMM’s
Weight matrices, Sequence motifs, information content, and sequence logos Morten Nielsen, CBS, Department of Systems Biology, DTU and Instituto de Investigaciones.
Blosum matrices What are they? Morten Nielsen BioSys, DTU
Psi-Blast Morten Nielsen, Department of systems biology, DTU.
Prediction of T cell epitopes using artificial neural networks Morten Nielsen, CBS, BioCentrum, DTU.
Performance measures Morten Nielsen, CBS, Department of Systems Biology, DTU.
Blast heuristics, Psi-Blast, and Sequence profiles Morten Nielsen Department of systems biology, DTU.
Prediction of T cell epitopes using artificial neural networks Morten Nielsen, CBS, BioCentrum, DTU.
Sequence motifs, information content, logos, and HMM’s
Predicting peptide MHC interactions
Immunological Bioinformatics
Motifs, logos, and Profile HMM’s
Sequence motifs, information content, and sequence logos
Immunological Bioinformatics
Sequence motifs, information content, logos, and HMM’s
Sequence motifs, information content, and sequence logos
Presentation transcript:

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU T cell Epitope predictions using bioinformatics (Neural Networks and hidden Markov models) Morten Nielsen, CBS, BioCentrum, DTU

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Processing of intracellular proteins MHC binding

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU What makes a peptide a potential and effective epitope? Part of a pathogen protein Successful processing –Proteasome cleavage –TAP binding Binds to MHC molecule Protein function –Early in replication Sequence conservation in evolution Sars virus

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU From proteins to immunogens Lauemøller et al., % processed0.5% bind MHC50% CTL response => 1/2000 peptide are immunogenic

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Location of class I epitopes GP1200 protein Structure (1GM9)

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU

MHC class I with peptide Anchor positions

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Prediction of HLA binding specificity Simple Motifs –Allowed/non allowed amino acids Extended motifs –Amino acid preferences (SYFPEITHI)SYFPEITHI) –Anchor/Preferred/other amino acids Hidden Markov models –Peptide statistics from sequence alignment Neural networks –Can take sequence correlations into account

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Where to get data? SYFPEITHI database –3500 peptides known to bind to HMC class I and II –Only published data MHCpep –13000 peptides known to bind to HMC class I and II –Published data and direct submission –No update since 1998 Binding affinity assays –Quantitative data. How strong does a peptide bind to the MHC molecule? –Costly and people do not publish negative results..

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Databases and web resources HLA Informatics Group, ANRI (HLA sequence database) IMGT/HLA Database (HLA sequence database) SYFPEITHI (Database of HLA Class I and II peptides) MHCPEP (Database of HLA Class I and II peptides) BIMAS (HLA Class I predictor) SYFPEITHI (HLA Class I predictor) NetMHC (HLA Class I prediction)

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Sequence information SLLPAIVEL YLLPAIVHI TLWVDPYEV GLVPFLVSV KLLEPVLLL LLDVPTAAV LLDVPTAAV LLDVPTAAV LLDVPTAAV VLFRGGPRG MVDGTLLLL YMNGTMSQV MLLSVPLLL SLLGLLVEV ALLPPINIL TLIKIQHTL HLIDYLVTS ILAPPVVKL ALFPQLVIL GILGFVFTL STNRQSGRQ GLDVLTAKV RILGAVAKV QVCERIPTI ILFGHENRV ILMEHIHKL ILDQKINEV SLAGGIIGV LLIENVASL FLLWATAEA SLPDFGISY KKREEAPSL LERPGGNEI ALSNLEVKL ALNELLQHV DLERKVESL FLGENISNF ALSDHHIYL GLSEFTEYL STAPPAHGV PLDGEYFTL GVLVGVALI RTLDKVLEV HLSTAFARV RLDSYVRSL YMNGTMSQV GILGFVFTL ILKEPVHGV ILGFVFTLT LLFGYPVYV GLSPTVWLS WLSLLVPFV FLPSDFFPS CLGGLLTMV FIAGNSAYE KLGEFYNQM KLVALGINA DLMGYIPLV RLVTLKDIV MLLAVLYCL AAGIGILTV YLEPGPVTA LLDGTATLR ITDQVPFSV KTWGQYWQV TITDQVPFS AFHHVAREL YLNKIQNSL MMRKLAILS AIMDKNIIL IMDKNIILK SMVGNWAKV SLLAPGAKQ KIFGSLAFL ELVSEFSRM KLTPLCVTL VLYRYGSFS YIGEVLVSV CINGVCWTV VMNILLQYV ILTVILGVL KVLEYVIKV FLWGPRALV GLSRYVARL FLLTRILTI HLGNVKYLV GIAGGLALL GLQDCTMLV TGAPVTYST VIYQYMDDL VLPDVFIRC VLPDVFIRC AVGIGIAVV LVVLGLLAV ALGLGLLPV GIGIGVLAA GAGIGVAVL IAGIGILAI LIVIGILIL LAGIGLIAA VDGIGILTI GAGIGVLTA AAGIGIIQI QAGIGILLA KARDPHSGH KACDPHSGH ACDPHSGHF SLYNTVATL RGPGRAFVT NLVPMVATV GLHCYEQLV PLKQHFQIV AVFDRKSDA LLDFVRFMG VLVKSPNHV GLAPPQHLI LLGRNSFEV PLTFGWCYK VLEWRFDSR TLNAWVKVV GLCTLVAML FIDSYICQV IISAVVGIL VMAGVGSPY LLWTLVVLL SVRDRLARL LLMDCSGSI CLTSTVQLV VLHDDLLEA LMWITQCFL SLLMWITQC QLSLLMWIT LLGATCMFV RLTRFLSRV YMDGTMSQV FLTPKKLQC ISNDVCAQV VKTDGNPPE SVYDFFVWL FLYGALLLA VLFSSDFRI LMWAKIGPV SLLLELEEV SLSRFSWGA YTAFTIPSI RLMKQDFSV RLPRIFCSC FLWGPRAYA RLLQETELV SLFEGIDFY SLDQSVVEL RLNMFTPYI NMFTPYIGV LMIIPLINV TLFIGSHVV SLVIVTTFV VLQWASLAV ILAKFLHWL STAPPHVNV LLLLTVLTV VVLGVVFGI ILHNGAYSL MIMVKCWMI MLGTHTMEV MLGTHTMEV SLADTNSLA LLWAARPRL GVALQTMKQ GLYDGMEHL KMVELVHFL YLQLVFGIE MLMAQEALA LMAQEALAF VYDGREHTV YLSGANLNL RMFPNAPYL EAAGIGILT TLDSQVMSL STPPPGTRV KVAELVHFL IMIGVLVGV ALCRWGLLL LLFAGVQCQ VLLCESTAV YLSTAFARV YLLEMLWRL SLDDYNHLV RTLDKVLEV GLPVEYLQV KLIANNTRV FIYAGSLSA KLVANNTRL FLDEFMEGV ALQPGTALL VLDGLDVLL SLYSFPEPE ALYVDSLFF SLLQHLIGL ELTLGEFLK MINAYLDKL AAGIGILTV FLPSDFFPS SVRDRLARL SLREWLLRI LLSAWILTA AAGIGILTV AVPDEIPPL FAYDGKDYI AAGIGILTV FLPSDFFPS AAGIGILTV FLPSDFFPS AAGIGILTV FLWGPRALV ETVSEQSNV ITLWQRPLV

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Sequence logo Height of a column equal to log 20 +  p log p Relative height of a letter is p Highly useful tool to visualize sequence motifs High information positions MHC class I HLA-A0201

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Characterizing a binding motif ALAKAAAAM ALAKAAAAN ALAKAAAAR ALAKAAAAT ALAKAAAAV GMNERPILT GILGFVFTM TLNAWVKVV KLNEPVLLL AVVPFIVSV 10 peptides known to bind MHC What can we learn? 1.A at P1 favors binding? 2.I is not allowed at P9? 3.K at P4 favors binding?

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Sequence information Description of binding motif Example P A = 6/10 P G = 2/10 P T = P K = 1/10 P C = P D = …P V = 0 Problems –Few data –Data redundancy/duplication ALAKAAAAM ALAKAAAAN ALAKAAAAR ALAKAAAAT ALAKAAAAV GMNERPILT GILGFVFTM TLNAWVKVV KLNEPVLLL AVVPFIVSV

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Sequence information Raw sequence counting ALAKAAAAM ALAKAAAAN ALAKAAAAR ALAKAAAAT ALAKAAAAV GMNERPILT GILGFVFTM TLNAWVKVV KLNEPVLLL AVVPFIVSV

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Pseudo-count and sequence weighting ALAKAAAAM ALAKAAAAN ALAKAAAAR ALAKAAAAT ALAKAAAAV GMNERPILT GILGFVFTM TLNAWVKVV KLNEPVLLL AVVPFIVSV Poor or biased sampling of sequence space I is not found at position P9. Does this mean that I is forbidden? No! Use Blosum substitution matrix to estimate pseudo frequency of I at P9 } Similar sequences Weight 1/5

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU The Blosum matrix

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Sequence weighting ALAKAAAAM ALAKAAAAN ALAKAAAAR ALAKAAAAT ALAKAAAAV GMNERPILT GILGFVFTM TLNAWVKVV KLNEPVLLL AVVPFIVSV

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Pseudo counts Sequence weighting and pseudo count –Prediction accuracy 0.60 Motif found on all data (485) –Prediction accuracy 0.79

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Weight matrices Estimate amino acid frequencies from alignment Now a weight matrix is given as W ij = log(p ij /q j ) –Here i is a position in the motif, and j an amino acid. q j is the background frequency for amino acid j. W is a L x 20 matrix, L is motif length Score sequences to weight matrix by looking up and adding L values from matrix

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Scoring sequences to a weight matrix A R N D C Q E G H I L K M F P S T W Y V ILYQVPFSV ALPYWNFAT MTAQWWLDA Which peptide is most likely to bind? Which peptide second?

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU How to predict The effect on the binding affinity of having a given amino acid at one position can be influenced by the amino acids at other positions in the peptide (sequence correlations). –Two adjacent amino acids may for example compete for the space in a pocket in the MHC molecule. Artificial neural networks (ANN) are ideally suited to take such correlations into account

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Neural networks Neural networks can learn higher order correlations! –What does this mean? A A => 0 A C => 1 C A => 1 C C => 0 No linear function can learn this pattern

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Neural networks w 11 w 12 v1v1 w 21 w 22 v2v2

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Evaluation of prediction accuracy True positive proportion = TP/(AP)False positive proportion = FP/(AN) A roc =0.5 A roc =0.8 Roc curves Pearson correlation TPFP AP AN

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Epitope predictions Sequence motif and HMM’s Sequence motifHMM cc: 0.76 A roc : 0.92 cc: 0.80 A roc : 0.95

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Epitope prediction. Neural Networks cc: 0.91 A roc : 0.98

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Evaluation of prediction accuracy

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Hepatitis C virus. Epitope predictions

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Proteasomal cleavage Netchop ( –Epitopes have strong C terminal cleavage –Epitopes can have strong internal cleavage sites Selection strategy –High binding peptides –High cleavage probability at C terminal NMVPFFPPV..S.....S

CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Hvad nu? 29 marts. Introduktion til hidden Markov models og weight matrices 5 april. Introduktion til neural networks 12 april. Introduktion til projekt 10 maj. Aflever projekt