Plzeň, 5.1.101 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky. Magnetický polovodič (Ga,Mn)As: technologie,

Slides:



Advertisements
Similar presentations
Chapter 2-4. Equilibrium carrier concentrations
Advertisements

Text optional: Institutsname Prof. Dr. Hans Mustermann Mitglied der Leibniz-Gemeinschaft Plans and issues of the activities of GaAs for Rossendorf.
Order Statistics The order statistics of a set of random variables X1, X2,…, Xn are the same random variables arranged in increasing order. Denote by X(1)
Time and Effort Reporting
Single Electron Devices Vishwanath Joshi Advanced Semiconductor Devices EE 698 A.
1 Chapter 5-1. PN-junction electrostatics You will also learn about: Poisson’s Equation Built-In Potential Depletion Approximation Step-Junction Solution.
Strong coupling between Tamm Plasmon and QW exciton
Re-cap: Focus on Employment DDD’s Waiver Amendments and Answers to questions frequently asked Vocational Planning and Integrated Community Employment (ICE)
Carrier and Phonon Dynamics in InN and its Nanostructures
Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Technology
Jairo Sinova (TAMU) Challenges and chemical trends in achieving a room temperature dilute magnetic semiconductor: a spintronics tango between theory and.
Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Charge Long-range magnetic order Implemented by Coupling Xavier Marti, 1.Metals:
Karel Výborný, Jan Zemen, Kamil Olejník, Petr Vašek, Miroslav Cukr, Vít Novák, Andrew Rushforth, R.P.Campion, C.T. Foxon, B.L. Gallagher, Tomáš Jungwirth.
University of Illinois Non-linear Electrodynamic Response of Dielectric Materials microwave applications (radar, etc) phase shifters tuned filters voltage.
Spintronics and Magnetic Semiconductors Joaquín Fernández-Rossier, Department of Applied Physics, University of Alicante (SPAIN) Alicante, June
Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
IBPOWER Kick off meeting – 07/02/08 Specific issues relating to plasma-MBE Growth under group III-rich versus group V-rich conditions Control of composition.
Making semiconductors magnetic: new materials properties, devices, and future NRI SWAN JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi.
Ab initio study of the diffusion of Mn through GaN Johann von Pezold Atomistic Simulation Group Department of Materials Science University of Cambridge.
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Liang He, Lei Ma, and Frank Tsui
Jairo Sinova Texas A &M University Support: References: Jungwirth et al Phys. Rev. B 72, (2005) and Jungwirth et al, Theory of ferromagnetic (III,Mn)V.
The spinning computer era Spintronics Hsiu-Hau Lin National Tsing-Hua Univ.
Spin-Polarised Scanning Tunnelling Microscopy of Thin Film Cr(001)?
School of Physics and Astronomy, University of Nottingham, UK
Vancouver 081 Free carrier induced substrate heating of the epitaxially grown GaMnAs Institute of Physics AS CR, Prague Vit Novak, Kamil Olejnik, Miroslav.
Theory of ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Richard Campion, Tom Foxon, Kevin Edmonds, Andrew.
Optical Properties of Ga 1-x Mn x As C. C. Chang, T. S. Lee, and Y. H. Chang Department of Physics, National Taiwan University Y. T. Liu and Y. S. Huang.
STRUCTURE AND MAGNETIC PROPERTIES OF ULTRA-THIN MAGNETIC LAYERS
Institute of Physics ASCR
National laboratory for advanced Tecnologies and nAnoSCience Material and devices for spintronics What is spintronics? Ferromagnetic semiconductors Physical.
Beyond ferromagnetic spintronics: antiferromagnetic I-Mn-V semiconductors Tomas Jungwirth Institute of Physics in Prague & University of Nottingham.
Anisotropic magnetoresistance effects in ferromagnetic semiconductor and metal devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon,
Regensburg, Curie point singularity in GaMnAs Institute of Physics of the Academy of Sciences of the Czech Republic Division of Solid State Physics.
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Getting FM in semiconductors is not trivial. Recall why we have FM in metals: Band structure leads to enhanced exchange interactions between (relatively)
Ferromagnetic semiconductors for spintronics Kevin Edmonds, Kaiyou Wang, Richard Campion, Devin Giddings, Nicola Farley, Tom Foxon, Bryan Gallagher, Tomas.
AlGaN/InGaN Photocathodes D.J. Leopold and J.H. Buckley Washington University St. Louis, Missouri, U.S.A. Large Area Picosecond Photodetector Development.
Ion Implantation and Ion Beam Analysis of Silicon Carbide Zsolt ZOLNAI MTA MFA Research Institute for Technical Physics and Materials Science Budapest,
Spintronics in metals and semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth,
MacDiarmid Institute for Advanced Materials and NanotechnologyVictoria University of Wellington Andrew Preston Wellington, New.
Electronic and Magnetic Structure of Transition Metals doped GaN Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu-Hwan Lee Future Technology Research Division, KIST,
Spin-orbit coupling induced magneto-resistance effects in ferromagnetic semiconductor structures: TAMR, CBAMR, AMR Tomas Jungwirth University of Nottingham.
Spintronic transistors: magnetic anisotropy and direct charge depletion concepts Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
D.-A. Luh, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, S. Harvey, R. E. Kirby, T. Maruyama, and C. Y. Prescott Stanford Linear Accelerator.
Ferromagnetic ordering in (Ga,Mn)As related zincblende semiconductors Tomáš Jungwirth Institute of Physics ASCR František Máca, Jan Mašek, Jan Kučera Josef.
Daresbury Laboratory Ferromagnetism of Transition Metal doped TiN S.C. Lee 1,2, K.R. Lee 1, K.H. Lee 1, Z. Szotek 2, W. Temmerman 2 1 Future Technology.
Direct identification of interstitial Mn in Ga 1-x Mn x As and evidence of its high thermal stability Lino Pereira 1, 2, 3 U. Wahl 2, J. G. Correia 2,,
Ferromagnetic Quantum Dots on Semiconductor Nanowires
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Ferromagnetic semiconductor materials and spintronic transistors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion,
Stefano Sanvito Physics Department, Trinity College, Dublin 2, Ireland TFDOM-3 Dublin, 11th July 2002.
Aronzon B.A. PRB, 84, (2011) Rylkov V.V. Tugushev V.V. Nikolaev S.N. .
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
SemiSpinNe t Research fueled by: ASRC Workshop on Magnetic Materials and Nanostructures Tokai, Japan January 10 th, 2012 Vivek Amin, JAIRO SINOVA Texas.
Spintronics in ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds,
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Extraordinary magnetoresistance in GaMnAs ohmic and Coulomb blockade devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Ultrafast Dynamic Study of Spin and Magnetization Reversal in (Ga,Mn)As Xinhui Zhang (张新惠) State Key Laboratory for Superlattices and Microstructures.
Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge W. S. Cho and J. A. C. Bland Cavendish Laboratory, University of Cambridge, UK.
ACADEMIC AND SCIENTIFIC WORK ROBERTO PINEDA GÓMEZ
Dilute moment ferromagnetic semicinductors for spintronics
High-temperature ferromagnetism
MBE Growth of Graded Structures for Polarized Electron Emitters
Yuanmin Shao, and Zuimin Jiang
Molecular Beam Epitaxy (MBE) C Tom Foxon
Yuanmin Shao, and Zuimin Jiang
Presentation transcript:

Plzeň, Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky. Magnetický polovodič (Ga,Mn)As: technologie, možnosti aplikace Fyzikální ústav AV ČR, v.v.i. theory (Jugwirth, Sinova,...) MBE (Novák, Cukr, Olejník,...) SQUID, transport (Olejník, Novák,...) Hitachi Lab Cambridge, UK lithography (Irvine,...) transport (Wunderlich, Owen,...) University,of Nottingham, UK MBE (Foxon, Campion)

Plzeň, magnetic semiconductors (Ga,Mn)As technology issues optimized x Mn -series gating GaMnAs Outline

Plzeň, semiconductors magnetism (ferro)magnetic semiconductors Eu-chalcogenides (EuO, EuGdS,...) problems: technology, T C,... diluted magnetic semiconductors (GaMnAs, GaMnP,...) Modern electronics electrically tunable magnetic properties spin degree of freedom spintronics !

Plzeň, Ga 1-x Mn x As - semiconductor Mn : [Ar] 4s 2 3d 5 x Mn < 0.1 % : E A ~ 100 meV x Mn > 1 % : Jungwirth et al., PRB 76, (2007) x=0.05% 1% 2% 7% ~100 meV E G /2 E DOS EFEF

Plzeň, Ga 1-x Mn x As - ferromagnet x Mn > 1 % : ~ carrier mediated FM 1 hole per Mn ~ 4.5  B per Mn T C ~ M.p 1/3

Plzeň, Ga 1-x Mn x As - technology hex. MnAs in cub. GaAs Problem: solubility limit of Mn in GaAs (~ 0.1%) Solution: Molecular Beam Epitaxy low-temperature MBE GaAs at T S > 150°C, but: defects, ,  growth parameters critical

Plzeň, Molecular Beam Epitaxy UHV growth chamber growth kinetics substrate beams sources high crystallographic quality low growth rate atomically smooth interfaces heterostructures, superlattices

Plzeň, MBE in FZU AV ČR III-V semiconductors Kryovak Veeco Gen II - 2” substrates - 3 chambers (load-lock, preparation, growth) - elements:group V – As group III – Ga, Al, In dopants – Si, C, Mn - in situ diagnostics: RHEED band-edge thermometry

Plzeň,

10 Ga 1-x Mn x As - technology hex. MnAs in cub. GaAs Problem: solubility limit of Mn in GaAs (~ 0.1%) Solution: Molecular Beam Epitaxy low-temperature MBE GaAs at T S > 150°C, but: defects, ,  growth parameters critical

Plzeň, crystal quality / surface morphology ?crystal quality / surface morphology ? amorphous / poly / 2D / 3D ? ~ 240°C  3D RHEED images (non-rotating) LT-MBE of GaMnAs ~ 220°C  2D ~ 7% Mn ~ 260°C  poly growth T: > <

Plzeň, J. Appl. Phys. 102, (2007) LT-MBE of GaMnAs crystal quality / surface morphologycrystal quality / surface morphology temperature stability ?temperature stability ? band-gap thermometry doping-induced overheating 3 % Mn 5 % Mn 7 % Mn

Plzeň, D 2D also: Campion et al., J. Mater. Sci. 15, 727 (2004) LT-MBE of GaMnAs surface morphology: 2D/3D best!surface morphology: 2D/3D best! temperature stabilitytemperature stability

Plzeň, D 2D As:Ga=3:1 As:Ga=1:1 LT-MBE of GaMnAs surface morphology : 2D/3Dsurface morphology : 2D/3D temperature stabilitytemperature stability As:(Ga+Mn) stoichiometryAs:(Ga+Mn) stoichiometry

Plzeň, LT-MBE of GaMnAs surface morphology : 2D/3Dsurface morphology : 2D/3D temperature stabilitytemperature stability As:(Ga+Mn) stoichiometryAs:(Ga+Mn) stoichiometry annealingannealing Mn in interstitial position (double donor, AF coupling) 8 h / 160°C Mn i out-diffusion increase in p, , M, T C

Plzeň, optimum time LT-MBE of GaMnAs surface morphology : 2D/3Dsurface morphology : 2D/3D temperature stabilitytemperature stability As-flux stoichiometricAs-flux stoichiometric optimal annealingoptimal annealing

Plzeň, optimum temperature LT-MBE of GaMnAs surface morphology : 2D/3Dsurface morphology : 2D/3D temperature stabilitytemperature stability As-flux stoichiometricAs-flux stoichiometric optimal annealingoptimal annealing optimum time... for given thickness

Plzeň, K 12.0% Mn, 20 nm 188K188K e.g. PRB 78, (2008); APL 93, (2008),... LT-MBE of GaMnAs surface morphology: 2D/3Dsurface morphology: 2D/3D temperature stabilitytemperature stability As-flux stoichiometricAs-flux stoichiometric optimal annealingoptimal annealing optimal sample thicknessoptimal sample thickness room temperature in Antarctica ! (-89.2°C, Vostok, 21 July 1983)

Plzeň, GaMnAs, x Mn series optimally grown/annealed samples (Ga 1-x Mn x As, x Mn =0.05 – 14 %, 20nm) Curie temperature magnetization - transport - magnetometry - IR absorption - MO -... characterization:

Plzeň, Conventional MOS FET structure ~ Volts ( Ohno et al. Nature ’00, APL ’06,...) high-  dielectrics ( Chiba et al., Nature ’08, Sawicky et al., Nature ’09,...) GaMnAs, gating alternatively...

Plzeň, GaMnAs, low voltage gating Built-in gate AlGaAs barrier LT-GaAs barrier p-i-p, p-i-n, p-n structures Benefits single technology no surface states high quality barrier (  ~ 10) low gate voltage Problems !

Plzeň, GaMnAs, low voltage gating Built-in gate problems breakdown field ~ 300 K technology issues p-type substrates in MBE  unintentional Mn-doping at high T S backward Mn diffusion As Ga at low T S

Plzeň, GaMnAs, low voltage gating Corbino geometry (gate leak reduction) Olejník et al, PRB 78, (2008) Owen et al, NJP 11, (2009) gate I-V n ~ 2x10 19 cm -3 barrier 20 nm x Mn = 2.0 % depletion possible V G =+3 V -1 V

Plzeň, GaMnAs, low voltage gating  R ~ 100%  T C ~ 2 K Olejník et al, PRB 78, (2008) Owen et al, NJP 11, (2009) Corbino geometry (gate leak reduction)

Plzeň, GaMnAs, low voltage gating tunable coercivity switching by gate pulses bistability :

Plzeň, GaMnAs, low voltage gating 30% AMR tuneable V G dependent competition of uniaxial and cubic anisotropies

Plzeň, Summary technology optimization, “high” T C T C keeps increasing (although hardly) GaMnAs close to metals (but still semiconducting) gating control of AMR Thank you !

Plzeň,